This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A360406 #17 Feb 22 2023 08:08:29 %S A360406 1,1,9,14,31,826,1,34 %N A360406 a(n) = minimal positive k such that prime(n) * prime(n+1) * ... * prime(n+k) - 1 is divisible by prime(n+k+1), or -1 if no such k exists. %C A360406 Assuming a(9) exists it is greater than 1.75 million. %C A360406 a(11) = 692, a(12) = 8, a(13) = 792. - _Robert Israel_, Feb 22 2023 %e A360406 a(1) = 1 as prime(1) * prime(2) - 1 = 2 * 3 - 1 = 5, which is divisible by prime(3) = 5. %e A360406 a(2) = 1 as prime(2) * prime(3) - 1 = 3 * 5 - 1 = 14, which is divisible by prime(4) = 7. %e A360406 a(3) = 9 as prime(3) * ... * prime(12) - 1 = 1236789689134, which is divisible by prime(13) = 41. %p A360406 f:= proc(n) local P,k,p; %p A360406 P:= ithprime(n); p:= nextprime(P); %p A360406 for k from 0 to 10^6 do %p A360406 if P-1 mod p = 0 then return k fi; %p A360406 p:= nextprime(p); %p A360406 od; %p A360406 FAIL %p A360406 end proc: %p A360406 map(f, [$1..8]); # _Robert Israel_, Feb 22 2023 %o A360406 (Python) %o A360406 from sympy import prime, nextprime %o A360406 def A360406(n): %o A360406 p = prime(n) %o A360406 q = nextprime(p) %o A360406 s, k = p*q, 1 %o A360406 while (s-1)%(q:=nextprime(q)): %o A360406 k += 1 %o A360406 s *= q %o A360406 return k # _Chai Wah Wu_, Feb 06 2023 %Y A360406 Cf. A360376, A360297, A000040, A007504, A332542, A332580. %K A360406 nonn,more %O A360406 1,3 %A A360406 _Scott R. Shannon_, Feb 06 2023