This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A360424 #21 Jun 03 2024 18:37:53 %S A360424 0,0,6,0,0,89,137,6985,0,3072,0,68,8346,213202,470102,540674,1014879, %T A360424 0,106329,0,37941,1582656,9244855,45046529,0,1239,5496,14247,490065 %N A360424 Array read by rows: row n consists of the numbers k such that k^2 + (sum of n-th powers of the digits of k^2) is a square. %C A360424 T(n,1) = 0. %C A360424 T(n,k) <= x where 9^n*(1+log_10(x^2)) = 2*x+1. %e A360424 Array begins: %e A360424 0 %e A360424 0, 6 %e A360424 0 %e A360424 0, 89, 137, 6985 %e A360424 0, 3072 %e A360424 0, 68, 8346, 213202, 470102, 540674, 1014879 %e A360424 0, 106329 %e A360424 0, 37941, 1582656, 9244855, 45046529. %e A360424 T(4,3) = 137 is a term because 137^2 = 18769 and 18769 + 1^4 + 8^4 + 7^4 + 6^4 + 9^4 = 182^2. %p A360424 f:= proc(d) local k, kmax; %p A360424 kmax:= fsolve(k^2 + 9^d*(1+log[10](k^2))=(k+1)^2, k=0..infinity); %p A360424 select(k -> issqr(k^2 + add(t^d, t=convert(k^2,base,10))), [$0..floor(kmax)]) %p A360424 end proc: %p A360424 seq(f(d), d=0..7); %Y A360424 Cf. A360422. %K A360424 nonn,tabf,base,more %O A360424 1,3 %A A360424 _Robert Israel_, Feb 06 2023