cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360427 Values of the argument at successive record minima of the function R defined as follows. For any integer x >= 1, let y > x be the smallest integer such that there exist integers x < c < d < y such that x^3 + y^3 = c^3 + d^3. Then R(x) = y/x.

Original entry on oeis.org

1, 2, 8, 9, 10, 17, 30, 42, 51, 135, 156, 285, 792, 1634, 3751, 4026, 6192, 14934, 15768, 16147, 45121, 58230, 61389, 79876, 167757, 177560, 213652, 525537, 917324, 1050787, 2237052, 3954983, 4157802
Offset: 1

Views

Author

Giedrius Alkauskas, Feb 07 2023

Keywords

Comments

For a given integer x, the identity x^3 + (12x)^3 = (9x)^3 + (10x)^3 holds, so R(x) <= 12.
A quadruple x = 2*N^4 - 4*N^3 + 9*N^2 - 8*N +10, y = 2*N^4 + 6*N^2 + N + 9, c = 2*N^4 - 3*N^3 + 12*N^2 - 5*N + 12, d = 2*N^4 - N^3 + 6*N^2 + N + 1 (for integer N) shows that the sequence is infinite.

Examples

			For x = 1, y = 12, 1^3 + 12^3 = 9^3 + 10^3, R(1) = 12. So, a(1) = 1.
For x = 2, y = 16, 2^3 + 16^3 = 9^3 + 15^3, R(2) = 8. So, a(2) = 2.
For x = 3, y = 36, 3^3 + 36^3 = 27^3 + 30^3, R(3) = 12. So, this does not provide a record minimum. The same negative outcome happens for x = 4, x = 5, x = 6, x = 7.
For x = 8, y = 53, 8^3 + 53^3 = 29^3 + 50^3, R(8) = 6.625. So, a(4) = 8.
For n = 8, a(8) = 42, since 42^3 + 69^3 = 56^3 + 61^3, and the ratio R(42) = 69/42 = 1.6428571... is an absolute minimum (eighth successive) for the function R(x) for 1 <= x <= 42.
		

Crossrefs

Programs

  • Python
    xm,ym,x,n = 0,1,0,1
    while True:
        x,y = x+1,x+4
        while y*xm < ym*x:
            c,d,s = x+1,y-1,x**3+y**3
            while cs:
                    d-=1
                else:
                    break
            if t==s:
                print("a({})={} x={} c={} d={} y={}".format(n,x,x,c,d,y))
                xm,ym,n = x,y,n+1
                break
            y+=1
    # Bert Dobbelaere, Mar 18 2023

Extensions

a(25)-a(33) from Bert Dobbelaere, Mar 18 2023