cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360429 Inverse Mobius transformation of A034714.

Original entry on oeis.org

1, 9, 19, 57, 51, 171, 99, 313, 262, 459, 243, 1083, 339, 891, 969, 1593, 579, 2358, 723, 2907, 1881, 2187, 1059, 5947, 1926, 3051, 3178, 5643, 1683, 8721, 1923, 7737, 4617, 5211, 5049, 14934, 2739, 6507, 6441, 15963, 3363, 16929, 3699, 13851, 13362, 9531, 4419, 30267, 7302, 17334
Offset: 1

Views

Author

R. J. Mathar, Feb 07 2023

Keywords

Crossrefs

Programs

  • Maple
    A360429 := proc(n)
        add(numtheory[tau](d)*d^2,d=numtheory[divisors](n)) ;
    end proc:
  • Mathematica
    f[p_, e_] := ((e+1)*p^(2*e+4) - (e+2)*p^(2*e+2) + 1)/(p^2-1)^2; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Feb 09 2023 *)

Formula

a(n) = Sum_{d|n} A000005(d)*d^2.
Dirichlet convolution of A034714 and A000012.
Dirichlet g.f.: zeta^2(s-2)*zeta(s).
From Amiram Eldar, Feb 09 2023: (Start)
Multiplicative with a(p^e) = ((e+1)*p^(2*e+4) - (e+2)*p^(2*e+2) + 1)/(p^2-1)^2.
Sum_{k=1..n} a(k) ~ (log(n) + 2*gamma - 1/3 + zeta'(3)/zeta(3)) * n^3 * zeta(3)/3, where gamma is Euler's constant (A001620). (End)