cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360432 E.g.f. satisfies A(x) = x * exp(A(x) + x^2).

This page as a plain text file.
%I A360432 #15 Feb 16 2025 08:34:04
%S A360432 0,1,2,15,112,1225,16896,283759,5623808,128431377,3321026560,
%T A360432 95915951791,3060250165248,106896447626137,4057412577591296,
%U A360432 166284754020913935,7318183421113532416,344228133020323687201,17233838271273426223104,915000759922243030582735
%N A360432 E.g.f. satisfies A(x) = x * exp(A(x) + x^2).
%H A360432 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LambertW-Function.html">Lambert W-Function</a>.
%H A360432 Wikipedia, <a href="https://en.wikipedia.org/wiki/Lambert_W_function">Lambert W function</a>.
%F A360432 E.g.f.: -LambertW( -x*exp(x^2) ).
%F A360432 a(n) ~ sqrt(1+LambertW(2*exp(-2))) * 2^(n/2) * n^(n-1) / (exp(n) * (LambertW(2*exp(-2)))^(n/2)). - _Vaclav Kotesovec_, Feb 07 2023
%o A360432 (PARI) my(N=20, x='x+O('x^N)); concat(0, Vec(serlaplace(-lambertw(-x*exp(x^2)))))
%Y A360432 Cf. A216857, A360433.
%Y A360432 Cf. A052318.
%K A360432 nonn
%O A360432 0,3
%A A360432 _Seiichi Manyama_, Feb 07 2023