This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A360440 #19 Mar 25 2025 08:57:20 %S A360440 1,1,1,1,1,1,1,1,1,1,1,1,3,1,1,1,1,7,15,1,1,1,1,10,71,105,1,1,1,1,42, %T A360440 280,1001,945,1,1,1,1,115,3660,15400,18089,10395,1,1,1,1,35,20365, %U A360440 614040,1401400,398959,135135,1,1 %N A360440 Square array read by antidiagonals upwards: T(n,k), n>=0, k>=0, is the number of ways of choosing nonnegative numbers for k indistinguishable A063008(n)-sided dice so that it is possible to roll every number from 0 to (A063008(n))^k-1. %C A360440 The number of configurations depends on the number of sides on the dice only through its prime signature. A063008 provides a canonical representative of each prime signature. %C A360440 Also the number of Krasner factorizations of (x^(A063008(n))^k)-1) / (x-1) into k polynomials each having A063008(n) nonzero terms all with coefficient +1. (Krasner and Ranulac, 1937) %H A360440 M. Krasner and B. Ranulac, <a href="https://gallica.bnf.fr/ark:/12148/bpt6k31562/f397.item">Sur une propriété des polynomes de la division du cercle</a>, Comptes Rendus Académie des Sciences Paris, 240:397-399, 1937. %H A360440 Matthew C. Lettington and Karl Michael Schmidt, <a href="https://arxiv.org/abs/1910.02455">Divisor Functions and the Number of Sum Systems</a>, arXiv:1910.02455 [math.NT], 2019. %F A360440 T(n,k) = f(A063008(n),k), where f(n,k) is the table given by A360098. %e A360440 A063008(2) = 4. There are 3 ways to assign numbers to two 4-sided dice: %e A360440 {{0, 1, 2, 3}, {0, 4, 8, 12}}, %e A360440 {{0, 1, 8, 9}, {0, 2, 4, 6}}, %e A360440 {{0, 1, 4, 5}, {0, 2, 8, 10}}. %e A360440 The table begins: %e A360440 1 1 1 1 1 1 1 ... %e A360440 1 1 1 1 1 1 1 ... %e A360440 1 1 3 15 105 945 10395 ... %e A360440 1 1 7 71 1001 18089 398959 ... %e A360440 1 1 10 280 15400 1401400 190590400 ... %e A360440 1 1 42 3660 614040 169200360 69444920160 ... %e A360440 1 1 115 20365 6891361 3815893741 3141782433931 ... %e A360440 1 1 35 5775 2627625 2546168625 4509264634875 ... %e A360440 1 1 230 160440 299145000 1175153779800 8396156461492800 ... %e A360440 ... %e A360440 The rows shown enumerate configurations for dice of 1, 2, 4, 6, 8, 12, 30, 16, and 24 sides, which represent the prime signatures {}, {1}, {2}, {1,1}, {3}, {2,1}, {1,1,1}, {4}, and {3,1}. %o A360440 (SageMath) %o A360440 @cached_function %o A360440 def r(i,M): %o A360440 kminus1 = len(M) %o A360440 u = tuple([1 for j in range(kminus1)]) %o A360440 if i > 1 and M == u: %o A360440 return(1) %o A360440 elif M != u: %o A360440 divList = divisors(i)[:-1] %o A360440 return(sum(r(M[j],tuple(sorted(M[:j]+tuple([d])+M[j+1:])))\ %o A360440 for d in divList for j in range(kminus1))) %o A360440 def f(n,k): %o A360440 if n == 1 or k == 0: %o A360440 return(1) %o A360440 else: %o A360440 return(r(n,tuple([n for j in range(k-1)]))) / factorial(k-1) %o A360440 # The following function produces the top left corner of the table: %o A360440 def TArray(maxn,maxk): %o A360440 retArray = [] %o A360440 primesList = [] %o A360440 ptnSum = 0 %o A360440 ptnItr = Partitions(ptnSum) %o A360440 ptn = ptnItr.first() %o A360440 n = 0 %o A360440 while n <= maxn: %o A360440 if ptn == None: %o A360440 primesList.append(Primes()[ptnSum]) %o A360440 ptnSum = ptnSum + 1 %o A360440 ptnItr = Partitions(ptnSum) %o A360440 ptn = ptnItr.first() %o A360440 prdct = prod(primesList[j]^ptn[j] for j in range(len(ptn))) %o A360440 retArray.append([f(prdct,k) for k in range(maxk+1)]) %o A360440 n = n + 1 %o A360440 ptn = ptnItr.next(ptn) %o A360440 return(retArray) %Y A360440 The concatenation of all prime signatures, listed in the order that corresponds to the rows of T(n,k), is A080577. %Y A360440 T(3,k) is |A002119(k)|. Starting with k = 1, T(1,k), T(2,k), T(4,k), and T(7,k) are given by columns 1-4 of A060540. %Y A360440 Row n is row A063008(n) of A360098. %Y A360440 Cf. A273013, A131514. %K A360440 nonn,tabl %O A360440 0,13 %A A360440 _William P. Orrick_, Feb 19 2023