This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A360441 #8 Mar 31 2023 14:42:27 %S A360441 1,1,2,7,8,4,71,78,36,8,1001,1072,504,128,16,18089,19090,9080,2480, %T A360441 400,32,398959,417048,199980,56960,10320,1152,64,10391023,10789982, %U A360441 5204556,1523480,295120,38304,3136,128,312129649,322520672,156264304,46629632,9436000,1336832,130816,8192,256 %N A360441 Triangle read by rows: T(n,k) is the number of pairs (c,m), where c is a covering of the 1 X (2n) grid with 1 X 2 rectangles and equal numbers of red and blue 1 X 1 squares and m is a matching between red squares and blue squares, such that exactly k matched pairs are adjacent. %C A360441 If row elements are divided by row sums, one obtains a probability distribution that approaches a Poisson distribution with expected value 1 as n approaches infinity. %F A360441 T(n,k) equals 2^k times the corresponding element of the triangle of A168422. %F A360441 T(n,k) = 2^k * Sum_{j=k..n} (-1)^(j-k) * C(2*n-j,n) * C(n,j) * C(j,k) * (n-j)!. %F A360441 Recurrence: T(n,k) = (1/k!) * Sum_{j=0..k} T(n-j,0) * (-1)^j * C(k,j) * Sum_{t=0..min(j,k-j)} (-1)^(j-t) * C(j,t) * (k-j)! / (k-j-t)! %F A360441 = (1/k!) * Sum_{j=0..k} T(n-j,0) * (-1)^j * C(k,j) * R(k,j) where R(k,j) is an element of the triangle of A253667. %e A360441 Triangle begins: %e A360441 1 %e A360441 1 2 %e A360441 7 8 4 %e A360441 71 78 36 8 %e A360441 1001 1072 504 128 16 %e A360441 18089 19090 9080 2480 400 32 %e A360441 398959 417048 199980 56960 10320 1152 64 %e A360441 10391023 10789982 5204556 1523480 295120 38304 3136 128 %o A360441 (SageMath) %o A360441 def T(n,k): %o A360441 return(2^k*sum((-1)^(j-k)*binomial(2*n-j,n)*binomial(n,j)\ %o A360441 *binomial(j,k)*factorial(n-j) for j in range(k,n+1))) %Y A360441 Column 1 is |A002119|. %Y A360441 T(n,k) equals 2^k times the corresponding element of the triangle of A168422. %Y A360441 Sum of row n is A001517(n). %Y A360441 Cf. A253667. %K A360441 nonn,tabl %O A360441 0,3 %A A360441 _William P. Orrick_, Mar 08 2023