cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360453 Numbers for which the prime multiplicities (or sorted signature) have the same median as the distinct prime indices.

This page as a plain text file.
%I A360453 #9 Feb 10 2023 17:11:44
%S A360453 1,2,9,12,18,40,100,112,125,180,250,252,300,352,360,392,396,405,450,
%T A360453 468,504,540,588,600,612,675,684,720,756,792,828,832,882,900,936,1008,
%U A360453 1044,1116,1125,1176,1188,1200,1224,1332,1350,1368,1372,1404,1440,1452,1476
%N A360453 Numbers for which the prime multiplicities (or sorted signature) have the same median as the distinct prime indices.
%C A360453 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%C A360453 The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).
%e A360453 The terms together with their prime indices begin:
%e A360453     1: {}
%e A360453     2: {1}
%e A360453     9: {2,2}
%e A360453    12: {1,1,2}
%e A360453    18: {1,2,2}
%e A360453    40: {1,1,1,3}
%e A360453   100: {1,1,3,3}
%e A360453   112: {1,1,1,1,4}
%e A360453   125: {3,3,3}
%e A360453   180: {1,1,2,2,3}
%e A360453   250: {1,3,3,3}
%e A360453   252: {1,1,2,2,4}
%e A360453   300: {1,1,2,3,3}
%e A360453   352: {1,1,1,1,1,5}
%e A360453   360: {1,1,1,2,2,3}
%e A360453 For example, the prime indices of 756 are {1,1,2,2,2,4} with distinct parts {1,2,4} with median 2 and multiplicities {1,2,3} with median 2, so 756 is in the sequence.
%t A360453 Select[Range[100],#==1||Median[Last/@FactorInteger[#]]== Median[PrimePi/@First/@FactorInteger[#]]&]
%Y A360453 Without taking median we have A109298, unordered A109297.
%Y A360453 For mean instead of median we have A324570, counted by A114638.
%Y A360453 For indices instead of multiplicities we have A360249, counted by A360245.
%Y A360453 For indices instead of distinct indices we have A360454, counted by A360456.
%Y A360453 These partitions are counted by A360455.
%Y A360453 A088529/A088530 gives mean of prime signature A124010.
%Y A360453 A112798 lists prime indices, length A001222, sum A056239.
%Y A360453 A240219 counts partitions with mean equal to median, ranks A359889.
%Y A360453 A316413 = numbers whose prime indices have integer mean, distinct A326621.
%Y A360453 A325347 = partitions with integer median, strict A359907, ranks A359908.
%Y A360453 A326567/A326568 gives mean of prime indices.
%Y A360453 A326619/A326620 gives mean of distinct prime indices.
%Y A360453 A359893 and A359901 count partitions by median.
%Y A360453 A360005 gives median of prime indices (times two).
%Y A360453 Cf. A000975, A359890, A359903, A360068, A360244, A360247, A360248.
%K A360453 nonn
%O A360453 1,2
%A A360453 _Gus Wiseman_, Feb 10 2023