This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A360454 #6 Feb 10 2023 17:11:39 %S A360454 1,2,9,54,100,120,125,135,168,180,189,240,252,264,280,297,300,312,336, %T A360454 351,396,408,440,450,456,459,468,480,513,520,528,540,552,560,588,612, %U A360454 616,621,624,672,680,684,696,728,744,756,760,783,816,828,837,880,882 %N A360454 Numbers for which the prime multiplicities (or sorted signature) have the same median as the prime indices. %C A360454 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A360454 The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length). %e A360454 The terms together with their prime indices begin: %e A360454 1: {} %e A360454 2: {1} %e A360454 9: {2,2} %e A360454 54: {1,2,2,2} %e A360454 100: {1,1,3,3} %e A360454 120: {1,1,1,2,3} %e A360454 125: {3,3,3} %e A360454 135: {2,2,2,3} %e A360454 168: {1,1,1,2,4} %e A360454 180: {1,1,2,2,3} %e A360454 189: {2,2,2,4} %e A360454 240: {1,1,1,1,2,3} %e A360454 For example, the prime indices of 336 are {1,1,1,1,2,4} with median 1 and multiplicities {1,1,4} with median 1, so 336 is in the sequence. %t A360454 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A360454 Select[Range[1000],Median[prix[#]]==Median[Length/@Split[prix[#]]]&] %Y A360454 For mean instead of median we have A359903, counted by A360068. %Y A360454 For distinct indices instead of indices we have A360453, counted by A360455. %Y A360454 For distinct indices instead of multiplicities: A360249, counted by A360245. %Y A360454 These partitions are counted by A360456. %Y A360454 A088529/A088530 gives mean of prime signature A124010. %Y A360454 A112798 lists prime indices, length A001222, sum A056239. %Y A360454 A240219 counts partitions with mean equal to median, ranked by A359889. %Y A360454 A325347 counts partitions w/ integer median, strict A359907, ranks A359908. %Y A360454 A326567/A326568 gives mean of prime indices. %Y A360454 A326619/A326620 gives mean of distinct prime indices. %Y A360454 A359893 and A359901 count partitions by median. %Y A360454 A359894 counts partitions with mean different from median, ranks A359890. %Y A360454 A360005 gives median of prime indices (times two). %Y A360454 Cf. A000975, A109297, A109298, A114638, A316413, A324570, A360244, A360248. %K A360454 nonn %O A360454 1,2 %A A360454 _Gus Wiseman_, Feb 10 2023