cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360455 Number of integer partitions of n for which the distinct parts have the same median as the multiplicities.

This page as a plain text file.
%I A360455 #8 Feb 11 2023 08:12:56
%S A360455 1,1,0,0,2,1,1,0,2,2,5,8,10,14,20,19,26,31,35,41,55,65,85,102,118,151,
%T A360455 181,201,236,281,313,365,424,495,593,688,825,978,1181,1374,1650,1948,
%U A360455 2323,2682,3175,3680,4314,4930,5718,6546,7532,8557,9777,11067,12622
%N A360455 Number of integer partitions of n for which the distinct parts have the same median as the multiplicities.
%C A360455 The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).
%e A360455 The a(1) = 1 through a(11) = 8 partitions:
%e A360455   1   .  .  22    221   3111   .  3311    333     3331     32222
%e A360455             211                   41111   32211   33211    33221
%e A360455                                                   42211    44111
%e A360455                                                   322111   52211
%e A360455                                                   511111   322211
%e A360455                                                            332111
%e A360455                                                            422111
%e A360455                                                            3221111
%t A360455 Table[Length[Select[IntegerPartitions[n], Median[Length/@Split[#]]==Median[Union[#]]&]],{n,0,30}]
%Y A360455 For mean instead of median: A114638, ranks A324570.
%Y A360455 For parts instead of multiplicities: A360245, ranks A360249.
%Y A360455 These partitions have ranks A360453.
%Y A360455 For parts instead of distinct parts: A360456, ranks A360454.
%Y A360455 A000041 counts integer partitions, strict A000009.
%Y A360455 A116608 counts partitions by number of distinct parts.
%Y A360455 A325347 counts partitions w/ integer median, strict A359907, ranks A359908.
%Y A360455 A359893 and A359901 count partitions by median, odd-length A359902.
%Y A360455 Cf. A000975, A027193, A240219, A326619/A326620, A359894, A359895, A360068, A360243, A360244, A360248.
%K A360455 nonn
%O A360455 0,5
%A A360455 _Gus Wiseman_, Feb 10 2023