This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A360455 #8 Feb 11 2023 08:12:56 %S A360455 1,1,0,0,2,1,1,0,2,2,5,8,10,14,20,19,26,31,35,41,55,65,85,102,118,151, %T A360455 181,201,236,281,313,365,424,495,593,688,825,978,1181,1374,1650,1948, %U A360455 2323,2682,3175,3680,4314,4930,5718,6546,7532,8557,9777,11067,12622 %N A360455 Number of integer partitions of n for which the distinct parts have the same median as the multiplicities. %C A360455 The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length). %e A360455 The a(1) = 1 through a(11) = 8 partitions: %e A360455 1 . . 22 221 3111 . 3311 333 3331 32222 %e A360455 211 41111 32211 33211 33221 %e A360455 42211 44111 %e A360455 322111 52211 %e A360455 511111 322211 %e A360455 332111 %e A360455 422111 %e A360455 3221111 %t A360455 Table[Length[Select[IntegerPartitions[n], Median[Length/@Split[#]]==Median[Union[#]]&]],{n,0,30}] %Y A360455 For mean instead of median: A114638, ranks A324570. %Y A360455 For parts instead of multiplicities: A360245, ranks A360249. %Y A360455 These partitions have ranks A360453. %Y A360455 For parts instead of distinct parts: A360456, ranks A360454. %Y A360455 A000041 counts integer partitions, strict A000009. %Y A360455 A116608 counts partitions by number of distinct parts. %Y A360455 A325347 counts partitions w/ integer median, strict A359907, ranks A359908. %Y A360455 A359893 and A359901 count partitions by median, odd-length A359902. %Y A360455 Cf. A000975, A027193, A240219, A326619/A326620, A359894, A359895, A360068, A360243, A360244, A360248. %K A360455 nonn %O A360455 0,5 %A A360455 _Gus Wiseman_, Feb 10 2023