This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A360461 #59 Mar 06 2023 07:51:03 %S A360461 1,2,2,3,5,4,7,4,5,12,4,6,14,7,6,7,21,7,6,8,23,11,14,9,26,20,14,10,28, %T A360461 25,24,11,39,25,24,12,41,28,28,6,12,13,54,28,28,6,12,14,56,35,42,6,12, %U A360461 15,59,40,57,6,12,16,61,44,65,22,12,17,78,44,65,22,12,18,80,47,71,31,30,19,99,47,71,31,30 %N A360461 T(n,k) is the sum of all the k-th smallest divisors of all positive integers <= n. Irregular triangle read by rows (n>=1, k>=1). %C A360461 Also, looking at all the partitions into equal-sized parts of all positive integers <= n, T(n,k) is the total number of parts in the partitions with the k-th largest parts. %C A360461 Column k lists the partial sums of the column k of A027750. %C A360461 The rows where the length row increases to a record gives A002182. %H A360461 Paolo Xausa, <a href="/A360461/b360461.txt">Table of n, a(n) for n = 1..10175 (rows 1..550 of triangle, flattened)</a> %H A360461 Michael De Vlieger, <a href="/A360461/a360461.png">Log log scatterplot of row n</a>, n = 1..5040, showing T(n, k) with trajectory of k in a color function where black indicates k = 1, red k = 2, ..., magenta k = 60, ignoring zeros. %e A360461 Triangle begins: %e A360461 1; %e A360461 2, 2; %e A360461 3, 5; %e A360461 4, 7, 4; %e A360461 5, 12, 4; %e A360461 6, 14, 7, 6; %e A360461 7, 21, 7, 6; %e A360461 8, 23, 11, 14; %e A360461 9, 26, 20, 14; %e A360461 10, 28, 25, 24; %e A360461 11, 39, 25, 24; %e A360461 12, 41, 28, 28, 6, 12; %e A360461 ... %e A360461 For n = 6 the divisors, in increasing order, of all positive integers <= 6 are as follows: %e A360461 ----------------------------- %e A360461 n\k | 1 2 3 4 %e A360461 ----------------------------- %e A360461 1 | 1 %e A360461 2 | 1, 2 %e A360461 3 | 1, 3 %e A360461 4 | 1, 2, 4 %e A360461 5 | 1, 5 %e A360461 6 | 1, 2, 3, 6 %e A360461 . %e A360461 The sum of the first divisors (k = 1) is equal to 1+1+1+1+1+1 = 6, so T(6,1) = 6. %e A360461 The sum of the second divisors (k = 2) is equal to 2+3+2+5+2 = 14, so T(6,2) = 14. %e A360461 The sum of the third divisors (k = 3) is equal to 4+3 = 7, so T(6,3) = 7. %e A360461 The sum of the fourth divisors (k = 4) is equal to 6, so T(6,4) = 6. %e A360461 So the 6th row of the triangle is [6, 14, 7, 6]. %e A360461 Also, for n = 6 the partitions into equal parts, with the sizes of the parts in decreasing order, of all positive integers <= 6 are as follows: %e A360461 ---------------------------------------------------- %e A360461 n\k | 1 2 3 4 %e A360461 ---------------------------------------------------- %e A360461 1 | [1] %e A360461 2 | [2], [1,1] %e A360461 3 | [3], [1,1,1] %e A360461 4 | [4], [2,2], [1,1,1,1] %e A360461 5 | [5], [1,1,1,1,1] %e A360461 6 | [6], [3,3], [2,2,2], [1,1,1,1,1,1] %e A360461 . %e A360461 The total number of parts in the 1st partitions (k = 1) is 6, so T(6,1) = 6. %e A360461 The total number of parts in the 2nd partitions (k = 2) is 14, so T(6,2) = 14. %e A360461 The total number of parts in the 3rd partitions (k = 3) is 7, so T(6,3) = 7. %e A360461 The total number of parts in the 4th partitions (k = 4) is 6, so T(6,4) = 6. %e A360461 So the 6th row of the triangle is [6, 14, 7, 6]. %t A360461 nn = 20; s[_] = 0; m[0] = 0; Do[Set[m[n], Max[m[n - 1], DivisorSigma[0, n]]], {n, nn}]; Do[MapIndexed[(s[First[#2]] += #1; Set[t[n, First[#2]], s[First[#2]]]) &, PadRight[Divisors[n], m[n]]], {n, nn}]; Table[t[n, k], {n, nn}, {k, m[n]}] // Flatten (* _Michael De Vlieger_, Mar 04 2023 *) %t A360461 A360461[rowmax_]:=DeleteCases[Accumulate[PadRight[Divisors[Range[rowmax]]]],0,{2}]; %t A360461 A360461[20] (* Generates 20 rows *) (* _Paolo Xausa_, Mar 05 2023 *) %o A360461 (PARI) rowlen(n) = vecmax(vector(n, k, numdiv(k))); \\ A070319 %o A360461 row(n) = my(vd=vector(n, i, divisors(i)), nb=rowlen(n)); vector(nb, k, sum(i=1, #vd, if (#(vd[i]) >= k, vd[i][k]))); \\ _Michel Marcus_, Mar 06 2023 %Y A360461 Row sums give A024916. %Y A360461 Row lengths give A070319. %Y A360461 Column 1 gives A000027. %Y A360461 Column 2 gives A088821. %Y A360461 The sum of the first n rows gives A175254. %Y A360461 Main sequences: A027750 and A244051. %Y A360461 Cf. A000005, A002182. %K A360461 nonn,tabf,look %O A360461 1,2 %A A360461 _Omar E. Pol_, Feb 07 2023