This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A360469 #38 Jul 15 2023 06:01:39 %S A360469 3,3,5,3,7,7,9,8,11,11,13,10,15,15,17,16,19,19,21,19,23,23,25,24,27, %T A360469 27,29,25,31,31,33,32,35,35,37,35,39,39,41,40,43,43,45,42,47,47,49,48, %U A360469 51,51,53,51,55,55,57,56,59,59,61,56,63,63,65,64,67,67,69,67,71,71,73,72,75,75,77,74,79 %N A360469 Only k >= 0 such that, for every odd r > 0, A093179(n) divides the generalized Fermat number (A007117(n)^r)^(2^k) + 1. %H A360469 Lorenzo Sauras-Altuzarra, <a href="https://doi.org/10.26493/2590-9770.1473.ec5">Some properties of the factors of Fermat numbers</a>, Art Discrete Appl. Math. (2022). %F A360469 a(n) = n - A007814(n + 2) (due to _Jinyuan Wang_). %e A360469 A093179(5) = 641, A007117(5) = 5 and the only k >= 0 such that, for every odd r > 0, 641 divides the generalized Fermat number (5^r)^(2^k) + 1 is 5; so a(5) = 5. %p A360469 a:=n->n-padic:-ordp(n+2,2): %p A360469 seq(a(n), n=3..79); %o A360469 (PARI) a(n) = n - valuation(n+2, 2); %o A360469 vector(77,n,a(n+2)) \\ _Joerg Arndt_, Mar 03 2023 %Y A360469 Cf. A000215 (Fermat numbers), A007117, A007814 (dyadic valuation), A093179, A307843 (divisors of Fermat numbers). %K A360469 nonn,easy %O A360469 3,1 %A A360469 _Lorenzo Sauras Altuzarra_, Feb 27 2023