This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A360470 #11 Feb 12 2023 10:05:34 %S A360470 1,11,21,2,12,31,3,13,41,4,14,51,5,15,61,6,16,71,7,17,81,8,18,91,9,19, %T A360470 101,10,110,111,121,112,131,113,141,114,151,115,161,116,171,117,181, %U A360470 118,191,119,201,20,22,32,23,42,24,52,25,62,26,72,27,82,28,92 %N A360470 Lexicographically earliest sequence of distinct positive integers such that for any n > 0, the k rightmost digits of a(n+1) equal the k leftmost digits of a(n) for some k > 0. %C A360470 Leading zeros are ignored. %C A360470 This sequence is a permutation of the positive integers with inverse A360472: %C A360470 - if a(n) < 10^e, then we can extend the sequence with a number of the form a(n) + k * 10^e (with k > 0), %C A360470 - by the pigeonhole principle, there are infinitely many terms starting with the same nonzero digit, say with d, %C A360470 - every number of the form 10*k + d (with k >= 0) appears in the sequence, %C A360470 - any number v can appear after a term of the form v * 10^k + d (with k > 0). %H A360470 Rémy Sigrist, <a href="/A360470/b360470.txt">Table of n, a(n) for n = 1..10000</a> %H A360470 Rémy Sigrist, <a href="/A360470/a360470.png">Scatterplot of the first 1000000 terms</a> %H A360470 Rémy Sigrist, <a href="/A360470/a360470.gp.txt">PARI program</a> %H A360470 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a> %e A360470 The first terms are: %e A360470 n a(n) a(n) aligned %e A360470 -- ---- ------------ %e A360470 1 1 1 %e A360470 2 11 11 %e A360470 3 21 21 %e A360470 4 2 2 %e A360470 5 12 12 %e A360470 6 31 31 %e A360470 7 3 3 %e A360470 8 13 13 %e A360470 9 41 41 %e A360470 10 4 4 %e A360470 11 14 14 %e A360470 12 51 51 %o A360470 (PARI) See Links section. %Y A360470 Cf. A262323, A360472 (inverse). %K A360470 nonn,base %O A360470 1,2 %A A360470 _Rémy Sigrist_, Feb 08 2023