This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A360481 #15 Feb 16 2025 08:34:04 %S A360481 0,1,6,63,1044,23805,692118,24482115,1020584232,49000005945, %T A360481 2662853279850,161586078510879,10830019921469532,794577001293803637, %U A360481 63339899145968483262,5451312770064188283195,503784284643602483767632,49757423537114340032969073 %N A360481 E.g.f. satisfies A(x) = x * exp(x + 2 * A(x)). %H A360481 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LambertW-Function.html">Lambert W-Function</a>. %F A360481 E.g.f.: A(x) = -LambertW(-2*x * exp(x))/2. %F A360481 a(n) = Sum_{k=1..n} 2^(k-1) * k^(n-1) * binomial(n,k). %F A360481 a(n) ~ sqrt(1 + LambertW(exp(-1)/2)) * n^(n-1) / (2 * LambertW(exp(-1)/2)^n * exp(n)). - _Vaclav Kotesovec_, Feb 17 2023 %o A360481 (PARI) my(N=20, x='x+O('x^N)); concat(0, Vec(serlaplace(-lambertw(-2*x*exp(x))/2))) %o A360481 (PARI) a(n) = sum(k=1, n, 2^(k-1)*k^(n-1)*binomial(n, k)); %Y A360481 Cf. A216857, A360482, A360483, A360484. %Y A360481 Cf. A360473. %K A360481 nonn %O A360481 0,3 %A A360481 _Seiichi Manyama_, Feb 09 2023