cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360483 E.g.f. satisfies A(x) = x * exp(x - 2 * A(x)).

This page as a plain text file.
%I A360483 #10 Feb 16 2025 08:34:04
%S A360483 0,1,-2,15,-172,2685,-53226,1281091,-36296408,1183527225,-43660076950,
%T A360483 1797823266591,-81746462498724,4068086310006901,-219929012455113794,
%U A360483 12835335232410655035,-804287930238495495856,53858337558670992931185
%N A360483 E.g.f. satisfies A(x) = x * exp(x - 2 * A(x)).
%H A360483 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LambertW-Function.html">Lambert W-Function</a>.
%F A360483 E.g.f.: A(x) = LambertW(2*x * exp(x))/2.
%F A360483 a(n) = Sum_{k=1..n} (-2)^(k-1) * k^(n-1) * binomial(n,k).
%o A360483 (PARI) my(N=20, x='x+O('x^N)); concat(0, Vec(serlaplace(lambertw(2*x*exp(x))/2)))
%o A360483 (PARI) a(n) = sum(k=1, n, (-2)^(k-1)*k^(n-1)*binomial(n, k));
%Y A360483 Cf. A216857, A360481, A360482, A360484.
%K A360483 sign
%O A360483 0,3
%A A360483 _Seiichi Manyama_, Feb 09 2023