cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360484 E.g.f. satisfies A(x) = x * exp(x - 3 * A(x)).

This page as a plain text file.
%I A360484 #10 Feb 16 2025 08:34:04
%S A360484 0,1,-4,48,-896,22880,-743232,29337280,-1363752448,72979407360,
%T A360484 -4419108684800,298730433250304,-22300928914403328,
%U A360484 1822195561572585472,-161756111552270491648,15501595224386724126720,-1595092357302221461127168,175405731698165304882495488
%N A360484 E.g.f. satisfies A(x) = x * exp(x - 3 * A(x)).
%H A360484 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LambertW-Function.html">Lambert W-Function</a>.
%F A360484 E.g.f.: A(x) = LambertW(3*x * exp(x))/3.
%F A360484 a(n) = Sum_{k=1..n} (-3)^(k-1) * k^(n-1) * binomial(n,k).
%o A360484 (PARI) my(N=20, x='x+O('x^N)); concat(0, Vec(serlaplace(lambertw(3*x*exp(x))/3)))
%o A360484 (PARI) a(n) = sum(k=1, n, (-3)^(k-1)*k^(n-1)*binomial(n, k));
%Y A360484 Cf. A216857, A360481, A360482, A360483.
%K A360484 sign
%O A360484 0,3
%A A360484 _Seiichi Manyama_, Feb 09 2023