This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A360486 #10 Feb 09 2023 10:44:41 %S A360486 0,1,5,15,36,76,147,267,462,769,1240,1947,2988,4496,6649,9683,13909, %T A360486 19734,27686,38447,52892,72138,97604,131084,174835,231687,305173, %U A360486 399687,520675,674865,870540,1117869,1429298,1820018,2308521,2917260,3673428,4609885,5766245 %N A360486 Convolution of A000041 and A000290. %F A360486 a(n) = Sum_{k=0..n} A000041(k) * (n-k)^2. %F A360486 G.f.: x*(1+x)/(1-x)^3 * Product_{k>=1} 1/(1 - x^k). %F A360486 a(n) ~ 3 * sqrt(2*n) * exp(sqrt(2*n/3)*Pi) / Pi^3. %p A360486 a:= n-> add(combinat[numbpart](n-j)*j^2, j=0..n): %p A360486 seq(a(n), n=0..42); # _Alois P. Heinz_, Feb 09 2023 %t A360486 Table[Sum[PartitionsP[k]*(n-k)^2, {k, 0, n}], {n, 0, 60}] %t A360486 CoefficientList[Series[x*(1+x) / ((1-x)^3 * QPochhammer[x]), {x, 0, 60}], x] %o A360486 (PARI) a(n) = sum(k=0, n, numbpart(k)*(n-k)^2); \\ _Michel Marcus_, Feb 09 2023 %Y A360486 Cf. A000041, A000290, A014153, A360487. %K A360486 nonn %O A360486 0,3 %A A360486 _Vaclav Kotesovec_, Feb 09 2023