This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A360497 #34 Mar 05 2023 19:49:45 %S A360497 2,3,5,7,23,223,2777,7727,27527,33377,33773,35537,35573,35753,37337, %T A360497 52727,55337,55373,55733,73553,75227,75353,75533,222557,222773,223277, %U A360497 225257,225527,233357,235337,235553,253553,253733,277223,322727,323537,332573,335273 %N A360497 Maximal sequence of primes whose digits are primes and whose digit sum is also a term. %C A360497 The sequence is maximal in the sense that a nonempty set of primes cannot be added consistently. %e A360497 2 is a term because it is a prime with prime digits only and its digit sum 2 is also a term. %e A360497 227 is not a term because the digit sum is 11 which is not a term because it has nonprime digits. %e A360497 27527 is a term: it is a prime, each digit (2,5,7) is also a prime, and the sum of the digits (2+7+5+2+7 = 23) is also in the sequence. %p A360497 R:= {2,3,5,7}: count:= 4: %p A360497 S:= [2,3,5,7]; %p A360497 for d from 2 to 11 do %p A360497 S:= map(t -> (10*t+2,10*t+3,10*t+5,10*t+7), S); %p A360497 for x in S do %p A360497 if member(convert(convert(x,base,10),`+`),R) and isprime(x) then %p A360497 R:= R union {x}; count:= count+1; %p A360497 fi %p A360497 od; %p A360497 od: %p A360497 sort(convert(R,list)); # _Robert Israel_, Mar 02 2023 %o A360497 (Python) %o A360497 from sympy import isprime %o A360497 seq = [2, 3, 5, 7] %o A360497 for i in range(9, 10**6, 2): %o A360497 s = str(i) %o A360497 if set(s) <= set("2357") and sum(map(int, s)) in seq and isprime(i): %o A360497 seq.append(i) %o A360497 print(seq) %Y A360497 A subsequence of A062088. %Y A360497 Cf. A000040, A007953. %K A360497 nonn,base %O A360497 1,1 %A A360497 _Hongwei Jin_, Feb 09 2023