cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360510 a(n) = Product_{i=2..n} p(i) - p(n+1)^2, where p(i) is the i-th prime.

This page as a plain text file.
%I A360510 #16 Nov 06 2024 10:19:58
%S A360510 -8,-22,-34,-16,986,14726,254894,4849316,111545594,3234845654,
%T A360510 100280243696,3710369065724,152125131761756,6541380665832806,
%U A360510 307444891294242896,16294579238595018884,961380175077106315814,58644190679703485487146,3929160775540133527934504,278970415063349480483702366
%N A360510 a(n) = Product_{i=2..n} p(i) - p(n+1)^2, where p(i) is the i-th prime.
%C A360510 It is known that a(n) >= 0 for n >= 5.
%C A360510 Remember an empty product equals 1 by convention.
%C A360510 See A064819 for another version.
%D A360510 S. W. Golomb, Elementary Problem E3137, Amer. Math. Monthly, Proposed 93 (1986), p. 215; Solution and Editorial Comments, 94 (1987), 883-884.
%H A360510 Paolo Xausa, <a href="/A360510/b360510.txt">Table of n, a(n) for n = 1..300</a>
%t A360510 FoldList[Times, 1, Most[#]] - #^2 & [Prime[Range[2, 25]]] (* _Paolo Xausa_, Nov 06 2024 *)
%o A360510 (Python)
%o A360510 from sympy import prime, primorial
%o A360510 def A360510(n): return (primorial(n)>>1)-prime(n+1)**2 # _Chai Wah Wu_, Feb 24 2023
%Y A360510 Cf. A062234, A064819, A360511.
%K A360510 sign
%O A360510 1,1
%A A360510 _N. J. A. Sloane_, Feb 24 2023