cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360523 a(n) = Sum_{d|n} mu(rad(d)) * delta_d(n/d), where rad(n) = A007947(n) and delta_d(n) is the greatest divisor of n that is relatively prime to d.

Original entry on oeis.org

1, 1, 2, 2, 4, 2, 6, 5, 7, 4, 10, 4, 12, 6, 8, 12, 16, 7, 18, 8, 12, 10, 22, 10, 23, 12, 24, 12, 28, 8, 30, 27, 20, 16, 24, 14, 36, 18, 24, 20, 40, 12, 42, 20, 28, 22, 46, 24, 47, 23, 32, 24, 52, 24, 40, 30, 36, 28, 58, 16, 60, 30, 42, 58, 48, 20, 66, 32, 44, 24
Offset: 1

Views

Author

Amiram Eldar, Feb 10 2023

Keywords

Comments

Analogous to the Euler totient function (A000010) as A360522 is analogous to A000203.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^e - e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i,1]^f[i,2] - f[i,2]);}

Formula

Multiplicative with a(p^e) = p^e - e.
Dirichlet g.f.: zeta(s-1)*zeta(s)^2 * Product_{p prime} (1 - 3/p^s + 1/p^(2*s-1) + 1/p^(2*s)).
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * Product_{p prime} (1 - p/((p-1)*(p+1)^2)) = 0.3243742337... .
A000010(n) <= a(n) <= A047994(n) (Khan, 2005).
a(n) = A000010(n) if and only if n is in A078779 (i.e., n is either squarefree or twice a squarefree number).
a(n) = A047994(n) if and only if n is in A005117 (i.e., n is squarefree).