cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360537 Areas of primitive Heron triangles with two rational medians from the infinite family based on Somos-5 sequences.

This page as a plain text file.
%I A360537 #9 Apr 07 2024 05:31:42
%S A360537 420,55440,23931600,142334216640,2137147184560080,
%T A360537 4323341954766548553840,18705358317240372854759881380,
%U A360537 1333577710124626249998068999458413600,248363720675646323338068819310182950300884320,4199805494977793853528867974891927438920668319491840
%N A360537 Areas of primitive Heron triangles with two rational medians from the infinite family based on Somos-5 sequences.
%H A360537 Andrew N. W. Hone, <a href="https://doi.org/10.1007/s40879-022-00586-w">Heron triangles with two rational medians and Somos-5 sequences</a>, European Journal of Mathematics, 8 (2022), 1424-1486; arXiv:<a href="https://arxiv.org/abs/2107.03197">2107.03197</a> [math.NT], 2021-2022.
%H A360537 Andrew N. W. Hone, <a href="https://doi.org/10.1007/s00283-024-10337-2">Heron Triangles and the Hunt for Unicorns</a>, Math. Intelligencer (2024); arXiv:<a href="https://arxiv.org/abs/2401.05581">2401.05581</a> [math.NT], 2024.
%H A360537 Wikipedia, <a href="https://en.wikipedia.org/wiki/Heronian_triangle">Heronian triangle</a>
%F A360537 a(n) = |S(n)*S(n+1)*S(n+2)^2*S(n+3)*S(n+4)*T(n)*T(n+1)*T(n+2)^2*T(n+3)*T(n+4)|, where S(n) = A006721(n+2) and T(n) = A360381(n) [Hone, Eq. (1.21)].
%t A360537 t[1|3|4] = 1; t[2] = -1; t[5] = -7;
%t A360537 s[-2|-1|0|1|2] = 1;
%t A360537 Do[f[n_] := f[n] = (f[n-1] f[n-4] + f[n-2] f[n-3]) / f[n-5], {f, {t, s}}];
%t A360537 a[n_] := Abs@Product[f[n] f[n+1] f[n+2]^2 f[n+3] f[n+4], {f, {s, t}}];
%t A360537 Table[a[n], {n, 10}]
%Y A360537 Cf. A006721, A360381.
%Y A360537 This is a subsequence of A223941.
%K A360537 nonn
%O A360537 1,1
%A A360537 _Andrey Zabolotskiy_, Feb 10 2023