A360539 a(n) is the cubefree part of n: the largest unitary divisor of n that is a cubefree number (A004709).
1, 2, 3, 4, 5, 6, 7, 1, 9, 10, 11, 12, 13, 14, 15, 1, 17, 18, 19, 20, 21, 22, 23, 3, 25, 26, 1, 28, 29, 30, 31, 1, 33, 34, 35, 36, 37, 38, 39, 5, 41, 42, 43, 44, 45, 46, 47, 3, 49, 50, 51, 52, 53, 2, 55, 7, 57, 58, 59, 60, 61, 62, 63, 1, 65, 66, 67, 68, 69, 70
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
f[p_, e_] := If[e < 3, p^e, 1]; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
-
PARI
a(n) = {my(f = factor(n)); prod(i=1, #f~, if(f[i, 2] < 3, f[i, 1]^f[i, 2], 1));}
-
Python
from math import prod from sympy import factorint def A360539(n): return prod(p**e for p,e in factorint(n).items() if e<=2) # Chai Wah Wu, Aug 06 2024
Formula
a(n) = 1 if and only if n is a cubefull number (A036966).
a(n) = n if and only if n is a cubefree number (A004709).
a(n) = n/A360540(n).
Multiplicative with a(p^e) = p^e if e <= 2, and 1 otherwise.
Dirichlet g.f.: zeta(s) * Product_{p prime} (1 + p^(1-s) - p^(-s) + p^(2-2*s) - p^(1-2*s) - p^(2-3*s) + p^(-3*s)).
Sum_{k=1..n} a(k) ~ c * n^2, where c = (Pi^2/12) * Product_{p prime} (1 - 1/p^2 - 1/p^3 + 1/p^5 + 1/p^6 - 1/p^7) = 0.4213813264... .
Comments