cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360541 a(n) is the least number k such that k*n is a cubefull number (A036966).

Original entry on oeis.org

1, 4, 9, 2, 25, 36, 49, 1, 3, 100, 121, 18, 169, 196, 225, 1, 289, 12, 361, 50, 441, 484, 529, 9, 5, 676, 1, 98, 841, 900, 961, 1, 1089, 1156, 1225, 6, 1369, 1444, 1521, 25, 1681, 1764, 1849, 242, 75, 2116, 2209, 9, 7, 20, 2601, 338, 2809, 4, 3025, 49, 3249, 3364
Offset: 1

Views

Author

Amiram Eldar, Feb 11 2023

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(Max[e, 3] - e); a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i=1, #f~, f[i, 1]^(max(f[i, 2], 3) - f[i, 2]));}

Formula

a(n) = 1 if and only if n is cubefull number (A036966).
a(n) = A356193(n)/n.
a(n) = A360539(n)^2/A329376(n)^3.
Multiplicative with a(p^e) = p^(max(e, 3) - e), i.e., a(p) = p^2, a(p^2) = p, and a(p^e) = 1 for e >= 3.
Dirichlet g.f.: zeta(s) * Product_{p prime} (1 + p^(2-s) - p^(-s) - p^(2-2*s) + p^(1-2*s) - p^(1-3*s) + p^(-3*s)).
Sum_{k=1..n} a(k) ~ c * n^3, where c = (zeta(3)/3) * Product_{p prime} (1 - 1/p^2 - 1/p^3 + 2/p^5 - 1/p^6 - 1/p^8 + 2/p^9 - 1/p^10) = 0.2078815423... .