A360541 a(n) is the least number k such that k*n is a cubefull number (A036966).
1, 4, 9, 2, 25, 36, 49, 1, 3, 100, 121, 18, 169, 196, 225, 1, 289, 12, 361, 50, 441, 484, 529, 9, 5, 676, 1, 98, 841, 900, 961, 1, 1089, 1156, 1225, 6, 1369, 1444, 1521, 25, 1681, 1764, 1849, 242, 75, 2116, 2209, 9, 7, 20, 2601, 338, 2809, 4, 3025, 49, 3249, 3364
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
f[p_, e_] := p^(Max[e, 3] - e); a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
-
PARI
a(n) = {my(f = factor(n)); prod(i=1, #f~, f[i, 1]^(max(f[i, 2], 3) - f[i, 2]));}
Formula
a(n) = 1 if and only if n is cubefull number (A036966).
a(n) = A356193(n)/n.
Multiplicative with a(p^e) = p^(max(e, 3) - e), i.e., a(p) = p^2, a(p^2) = p, and a(p^e) = 1 for e >= 3.
Dirichlet g.f.: zeta(s) * Product_{p prime} (1 + p^(2-s) - p^(-s) - p^(2-2*s) + p^(1-2*s) - p^(1-3*s) + p^(-3*s)).
Sum_{k=1..n} a(k) ~ c * n^3, where c = (zeta(3)/3) * Product_{p prime} (1 - 1/p^2 - 1/p^3 + 2/p^5 - 1/p^6 - 1/p^8 + 2/p^9 - 1/p^10) = 0.2078815423... .