This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A360546 #22 Feb 12 2023 04:53:44 %S A360546 1,5,2,28,20,3,165,168,50,4,1001,1320,588,100,5,6188,10010,5940,1568, %T A360546 175,6,38760,74256,55055,19800,3528,280,7,245157,542640,482664,220220, %U A360546 54450,7056,420,8,1562275,3922512,4069800,2252432,715715,130680,12936,600,9 %N A360546 Triangle read by rows: T(n, m) = (n+1-m)*C(2*n+2-m, m)*C(3*n-3*m+2, n-m+1)/(2*n-m+2). %F A360546 G.f.: -1/(2*x) + (sqrt(3)*cot((1/3)*arcsin((3*sqrt(3)*sqrt(x))/(2- 2*x*y))))/ (2*sqrt(x*(-27*x + 4*(-1+x*y)^2))). %e A360546 Triangle begins: %e A360546 1; %e A360546 5, 2; %e A360546 28, 20, 3; %e A360546 165, 168, 50, 4; %e A360546 1001, 1320, 588, 100, 5; %e A360546 6188, 10010, 5940, 1568, 175, 6; %p A360546 A360546 := proc(n, k) m := n-k+1; (1/3)*binomial(3*m, m)*binomial(m + n, k) end: %p A360546 seq(print(seq(A360546(n, k), k = 0..n)), n = 0..8); # _Peter Luschny_, Feb 11 2023 %o A360546 (Maxima) %o A360546 T(n,m):=if n<m then 0 else ((n+1-m)*binomial(2*n+2-m,m)*binomial(3*n-3*m+2,n-m+1))/(2*n-m+2); %Y A360546 Cf. A025174, A134481. %K A360546 nonn,tabl %O A360546 0,2 %A A360546 _Vladimir Kruchinin_, Feb 11 2023