This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A360570 #36 Mar 01 2023 14:29:04 %S A360570 6,12,21,34,49,51,58,68,72,92,100,106,121,133,138,156,172,175,195,196, %T A360570 219,243,262,274,297,327,337,359,373,405,409,428,466,491,506,531,548, %U A360570 551,583,593,614,658,681,685,689,740,753,778,800,804,830,851,857,884 %N A360570 Numbers m such that m concatenated with k produces a cube for some 0 <= k <= m. %C A360570 Numbers k such that A243092(k) <> A245631(k). %H A360570 Chai Wah Wu, <a href="/A360570/b360570.txt">Table of n, a(n) for n = 1..10000</a> %e A360570 64 = 4^3 is a cube and 4 <= 6, thus 6 is a term. %e A360570 343 = 7^3 is a cube and 3 <= 34, thus 34 is a term. %e A360570 1000 = 10^3 is a cube and 0 <= 100, thus 100 is a term. %e A360570 5359375 = 175^3 is a cube and 375 <= 5359, thus 5359 is a term. %p A360570 filter:= proc(n) local d,a,b,r,rmin,i; %p A360570 for d from 1 to ilog10(n)+1 do %p A360570 a:=ceil((10^d*n)^(1/3)); %p A360570 b:= floor((10^d*(n+1))^(1/3)); %p A360570 if d = 1 then rmin:= 0 else rmin:= 10^(d-1) fi; %p A360570 for i from a to b do %p A360570 r:= i^3 -10^d*n; %p A360570 if r >= min(10^d,n+1) then break fi; %p A360570 if r < rmin then next fi; %p A360570 return true %p A360570 od %p A360570 od; %p A360570 false %p A360570 end proc: %p A360570 select(filter, [$1..1000]); # _Robert Israel_, Feb 22 2023 %o A360570 (Python) %o A360570 from itertools import count, islice %o A360570 from sympy import integer_nthroot %o A360570 def A360570_gen(startvalue=1): # generator of terms >= startvalue %o A360570 for n in count(max(startvalue,1)): %o A360570 if integer_nthroot(m:=10*n,3)[1]: %o A360570 yield n %o A360570 else: %o A360570 a = 1 %o A360570 while (k:=(integer_nthroot(a*(m+1)-1,3)[0]+1)**3-m*a)>=10*a: %o A360570 a *= 10 %o A360570 if a > n: %o A360570 break %o A360570 else: %o A360570 if k <= n: %o A360570 yield n %o A360570 A360570_list = list(islice(A360570_gen(),20)) %o A360570 (PARI) is(n) = { for (k=0, n, if (ispower(n*10^max(1,#digits(k))+k, 3), return (1))); return (0) } \\ _Rémy Sigrist_, Feb 20 2023 %Y A360570 Cf. A243092, A245631. %K A360570 nonn,base %O A360570 1,1 %A A360570 _Chai Wah Wu_, Feb 20 2023