This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A360571 #61 Feb 16 2025 08:34:04 %S A360571 1,1,1,2,2,1,1,3,6,6,3,1,1,4,11,16,16,11,4,1,1,5,17,33,48,48,33,17,5, %T A360571 1,1,6,24,58,107,140,140,107,58,24,6,1,1,7,32,92,203,329,424,424,329, %U A360571 203,92,32,7,1,1,8,41,136,347,668,1039,1280,1280,1039,668,347,136,41,8,1 %N A360571 Triangle read by rows: T(n,k) is the k-th Lie-Betti number of the path graph on n-vertices, n >= 1, 0 <= k <= 2*n - 1. %H A360571 Marco Aldi and Samuel Bevins, <a href="https://arxiv.org/abs/2212.13608">L_oo-algebras and hypergraphs</a>, arXiv:2212.13608 [math.CO], 2022. See page 9. %H A360571 Meera Mainkar, <a href="https://arxiv.org/abs/1310.3414">Graphs and two step nilpotent Lie algebras</a>, arXiv:1310.3414 [math.DG], 2013. See page 1. %H A360571 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PathGraph.html">Path Graph</a>. %e A360571 Triangle begins: %e A360571 k=0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 %e A360571 n=1: 1 1 %e A360571 n=2: 1 2 2 1 %e A360571 n=3: 1 3 6 6 3 1 %e A360571 n=4: 1 4 11 16 16 11 4 1 %e A360571 n=5: 1 5 17 33 48 48 33 17 5 1 %e A360571 n=6: 1 6 24 58 107 140 140 107 58 24 6 1 %e A360571 n=7: 1 7 32 92 203 329 424 424 329 203 92 32 7 1 %e A360571 n=8: 1 8 41 136 347 668 1039 1280 1280 1039 668 347 136 41 8 1 %o A360571 (SageMath) %o A360571 from sage.algebras.lie_algebras.lie_algebra import LieAlgebra %o A360571 def LieAlgebraFromGraph(G, Module = QQ): %o A360571 ''' Takes a graph and a module (optional) as an input.''' %o A360571 d = {} %o A360571 for edge in G.edges(): # this defines the relations among the generators of the Lie algebra %o A360571 key = ("x" + str(edge[0]), "x" + str(edge[1])) #[x_i, x_j] %o A360571 value = {"x_" + str(edge[0]) + "_" + str(edge[1]): 1} #x_{i,j} %o A360571 d[key] = value #appending to the dictionary d %o A360571 C = LieAlgebras(Module).WithBasis().Graded() #defines the category that we need to work with. %o A360571 C = C.FiniteDimensional().Stratified().Nilpotent() #specifies that the algebras we want should be finite, stratified, and nilpotent %o A360571 L = LieAlgebra(Module, d, nilpotent=True, category=C) %o A360571 def sort_generators_by_grading(lie_algebra, grading_operator): #this sorts the generators by their grading. In this case, V1 are vertices and V2 %o A360571 generators = lie_algebra.gens() %o A360571 grading = [grading_operator(g) for g in generators] #using the grading operator to split the elements into their respective vector spaces %o A360571 sorted_generators = [g for _, g in sorted(zip(grading, generators))] %o A360571 grouped_generators = {} %o A360571 for g in sorted_generators: %o A360571 if grading_operator(g) in grouped_generators: %o A360571 grouped_generators[grading_operator(g)].append(g) %o A360571 else: %o A360571 grouped_generators[grading_operator(g)] = [g] %o A360571 return grouped_generators %o A360571 grading_operator = lambda g: g.degree() #defining the grading operator %o A360571 grouped_generators = sort_generators_by_grading(L, grading_operator) #evaluating the function to pull the generators apart %o A360571 V1 = grouped_generators[1] #elements from vertices %o A360571 V2 = grouped_generators[2] #elements from edges %o A360571 return L #, V1, V2 #returns the Lie algebra and the two vector spaces %o A360571 def betti_numbers(lie_algebra): #this function will calculate the Lie theoretic Betti numbers and return them as a list %o A360571 dims = [] %o A360571 H = lie_algebra.cohomology() %o A360571 for n in range(lie_algebra.dimension() + 1): %o A360571 dims.append(H[n].dimension()) %o A360571 return dims %o A360571 def A360571_row(n): %o A360571 if n == 1: return [1, 1] %o A360571 return betti_numbers(LieAlgebraFromGraph(graphs.PathGraph(n))) %o A360571 for n in range(1,7): print(A360571_row(n)) %Y A360571 Cf. A360572 (cycle graph), A088459 (star graph), A360625 (complete graph), A360938 (ladder graph), A360937 (wheel graph). %Y A360571 Cf. A063782 appears to be half the row sum. %K A360571 nonn,tabf %O A360571 1,4 %A A360571 _Samuel J. Bevins_, Feb 12 2023