This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A360574 #25 Feb 22 2023 08:08:07 %S A360574 10001,100011,100101,101001,110001,1000111,1001011,1001101,1010011, %T A360574 1010101,1011001,1100011,1100101,1101001,1110001,10001111,10010111, %U A360574 10011011,10011101,10100111,10101011,10101101,10110011,10110101,10111001,11000111,11001011,11001101,11010011,11010101,11011001,11100011 %N A360574 Binary expansions of odd numbers with three zeros in their binary expansion. %C A360574 For m >= 5, there are A000292(m-4) terms with m digits. %F A360574 a(n) = A007088(A360573(n)). %e A360574 1010101 has three digits 0 and is the binary expansion of the odd integer 85, so 1010101 is a term. %t A360574 FromDigits[IntegerDigits[#, 2]] & /@ Select[Range[1, 250, 2], DigitCount[#, 2, 0] == 3 &] (* _Amiram Eldar_, Feb 18 2023 *) %o A360574 (Python) %o A360574 from itertools import count, islice %o A360574 from sympy.utilities.iterables import multiset_permutations %o A360574 def A360574_gen(): # generator of terms %o A360574 yield from (int('1'+''.join(d)+'1') for l in count(0) for d in multiset_permutations('000'+'1'*l)) %o A360574 A360574_list = list(islice(A360574_gen(),30)) # _Chai Wah Wu_, Feb 18 2023 %Y A360574 Cf. A000292, A007088, A360573. %Y A360574 Similar, but with k zeros in their binary expansion: A000042 (k=0), A190619 (k=1), A357774 (k=2). %K A360574 nonn,base %O A360574 1,1 %A A360574 _Bernard Schott_, Feb 18 2023