A360587 a(n) is the least positive integer k such that k*(k+1)*...*(k+n-1) does not contain the digit 2, or -1 if there is no such k.
1, 2, 1, 3, 7, 2, 1, 3, 3, 2, 1, 1, 3, 2, 1, 5, 10, 10, 10, 17, 4, 8, 38, 38, 19, 17, 2, 1, 1, 3
Offset: 1
Examples
a(4) = 3 because 3*4*5*6 = 360 does not contain the digit 2, while 1*2*3*4 = 24 and 2*3*4*5 = 120 do.
Crossrefs
Cf. A173333.
Programs
-
Maple
f:= proc(n) local k,t; t:= n!; for k from 1 to 100000 do if not member(2,convert(t,base,10)) then return k fi; t:= t*(n+k)/k; od: -1 end proc: map(f, [$1..32]);
Comments