cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360589 Numbers k that set records in A355432.

Original entry on oeis.org

1, 18, 48, 54, 162, 384, 486, 1350, 1458, 2250, 2430, 3750, 6000, 6750, 7290, 11250, 12150, 14580, 15000, 15360, 18750, 21870, 30720, 33750, 36450, 37500, 43740, 56250, 61440, 65610, 93750, 122880, 168750, 182250, 187500, 196830, 245760, 281250, 328050, 360150, 375000, 393660
Offset: 1

Views

Author

Michael De Vlieger, Feb 22 2023

Keywords

Comments

Subset of A055932.
For n > 1, subset of A360768, which is in turn a subset of A126706.
Conjecture: for n > 2, subset of A364702. - Michael De Vlieger, Oct 04 2024

Examples

			Let rad(m) = A007947(m).
a(1) = 1 since 1 is the empty product.
a(2) = 18 since {12} is a nondivisor k < 18 such that rad(k) = rad(18).
a(3) = 48 since {18, 36} are nondivisors k < 48 such that rad(k) = rad(48).
a(4) = 54 since {12, 24, 36, 48} are nondivisors k < 54 such that rad(k) = rad(54), etc.
Table shows prime decomposition of a(n) = Product p^e, noting multiplicity e in the pi(p)-th position. For example, a(n) = 1350 = 2 * 3^3 * 5^2, hence we write 1.3.2.
a(n) = A055932(i) and has A360912(n) nondivisors k < a(n) such that rad(k) = rad(a(n)).
   n    a(n) A067255(a(n))  i  A360912(n)
  ----------------------------------------
   1      1      0          1          0
   2     18      1.2        8          1
   3     48      4.1       13          2
   4     54      1.3       14          4
   5    162      1.4       25          8
   6    384      7.1       37         10
   7    486      1.5       42         14
   8   1350      1.3.2     65         16
   9   1458      1.6       67         21
  10   2250      1.2.3     81         23
  11   2430      1.5.1     85         26
  12   3750      1.1.4     99         33
  ...
		

Crossrefs

Programs

  • Mathematica
    rad[n_] := rad[n] = Times @@ FactorInteger[n][[All, 1]]; t = Select[Range[2^14], Nor[SquareFreeQ[#], PrimePowerQ[#]] &]; s = Select[t, #1/#2 >= #3 & @@ {#1, Times @@ #2, #2[[2]]} & @@ {#, FactorInteger[#][[All, 1]]} &]; t = Table[m = s[[n]]; r = rad[m]; Count[TakeWhile[t, # < m &], _?(And[rad[#] == r, Mod[m, #] != 0] &)], {n, Length[s]}]; {1}~Join~Map[s[[FirstPosition[t, #][[1]]]] &, Union@ FoldList[Max, t]]