This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A360598 #8 Feb 14 2023 12:54:57 %S A360598 1,1,2,6,1,4,20,1,7,56,1,9,90,1,11,132,1,13,182,1,15,240,1,17,306,1, %T A360598 19,399,1,22,506,1,24,600,1,26,702,1,28,812,1,30,930,1,32,1056,1,34, %U A360598 1190,1,36,1332,1,38,1482,1,40,1640,1,42,1806,1,44,1980,1,46 %N A360598 Lexicographically earliest sequence of positive integers such that the ratios between successive terms, { max(a(n), a(n+1)) / min(a(n), a(n+1)), n > 0 }, are distinct integers. %C A360598 See A360599 for the corresponding ratios. %e A360598 The first terms, alongside the corresponding ratios, are: %e A360598 n a(n) Ratio between a(n) and a(n+1) %e A360598 -- ---- ----------------------------- %e A360598 1 1 1 %e A360598 2 1 2 %e A360598 3 2 3 %e A360598 4 6 6 %e A360598 5 1 4 %e A360598 6 4 5 %e A360598 7 20 20 %e A360598 8 1 7 %e A360598 9 7 8 %e A360598 10 56 56 %e A360598 11 1 9 %e A360598 12 9 10 %o A360598 (PARI) See Links section. %o A360598 (Python) %o A360598 from itertools import islice %o A360598 def agen(): # generator of terms %o A360598 an, ratios = 1, set() %o A360598 while True: %o A360598 yield an %o A360598 k = 1 %o A360598 q, r = divmod(max(k, an), min(k, an)) %o A360598 while r != 0 or q in ratios: %o A360598 k += 1 %o A360598 q, r = divmod(max(k, an), min(k, an)) %o A360598 an = k %o A360598 ratios.add(q) %o A360598 print(list(islice(agen(), 66))) # _Michael S. Branicky_, Feb 13 2023 %Y A360598 Cf. A084337, A360599. %K A360598 nonn %O A360598 1,3 %A A360598 _Rémy Sigrist_, Feb 13 2023