This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A360613 #19 Feb 25 2023 15:20:01 %S A360613 1,1,2,3,4,5,7,8,9,11,13,15,14,17,18,19,23,24,25,29,26,31,28,33,36,37, %T A360613 41,40,43,47,46,49,50,51,52,53,59,55,61,57,63,64,67,71,73,79,81,83,82, %U A360613 85,86,87,88,89,91,93,92,95,97,101,100,103,107,109,113,111 %N A360613 Lexicographically earliest sequence of positive integers such that the products of the form a(2*u-1) * a(2*v) with u, v > 0 are all distinct. %C A360613 In other words, the products of a term from the odd bisection by a term from the even bisection are all distinct. %C A360613 If we consider the bitwise XOR operator instead of the multiplication then we obtain A000695 interleaved with A062880. %C A360613 The value 1 is the only duplicate. %C A360613 All prime numbers appear in this sequence, in ascending order. %C A360613 For n = 1..50000, if m_n denotes the least positive value not in {a(2*u-1) * a(2*v), 1 <= 2*u-1 <= n and 1 <= 2*v <= n}, then a(n+1) = m_n or a(n+2) = m_n. Will this pattern last forever? %H A360613 Rémy Sigrist, <a href="/A360613/b360613.txt">Table of n, a(n) for n = 1..10000</a> %H A360613 Rémy Sigrist, <a href="/A360613/a360613.txt">C program</a> %F A360613 a(n) < a(n+2). %e A360613 The first terms, alongside the corresponding products, are: %e A360613 n a(n) Corresponding products %e A360613 -- ---- -------------------------- %e A360613 1 1 %e A360613 2 1 1 %e A360613 3 2 2 %e A360613 4 3 3, 6 %e A360613 5 4 4, 12 %e A360613 6 5 5, 10, 20 %e A360613 7 7 7, 21, 35 %e A360613 8 8 8, 16, 32, 56 %e A360613 9 9 9, 27, 45, 72 %e A360613 10 11 11, 22, 44, 77, 99 %e A360613 11 13 13, 39, 65, 104, 143 %e A360613 12 15 15, 30, 60, 105, 135, 195 %o A360613 (C) See Links section. %Y A360613 Cf. A000695, A062880, A066724, A360627-A360628 (bisections), A360633 (products). %K A360613 nonn %O A360613 1,3 %A A360613 _Rémy Sigrist_, Feb 14 2023