cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360613 Lexicographically earliest sequence of positive integers such that the products of the form a(2*u-1) * a(2*v) with u, v > 0 are all distinct.

This page as a plain text file.
%I A360613 #19 Feb 25 2023 15:20:01
%S A360613 1,1,2,3,4,5,7,8,9,11,13,15,14,17,18,19,23,24,25,29,26,31,28,33,36,37,
%T A360613 41,40,43,47,46,49,50,51,52,53,59,55,61,57,63,64,67,71,73,79,81,83,82,
%U A360613 85,86,87,88,89,91,93,92,95,97,101,100,103,107,109,113,111
%N A360613 Lexicographically earliest sequence of positive integers such that the products of the form a(2*u-1) * a(2*v) with u, v > 0 are all distinct.
%C A360613 In other words, the products of a term from the odd bisection by a term from the even bisection are all distinct.
%C A360613 If we consider the bitwise XOR operator instead of the multiplication then we obtain A000695 interleaved with A062880.
%C A360613 The value 1 is the only duplicate.
%C A360613 All prime numbers appear in this sequence, in ascending order.
%C A360613 For n = 1..50000, if m_n denotes the least positive value not in {a(2*u-1) * a(2*v), 1 <= 2*u-1 <= n and 1 <= 2*v <= n}, then a(n+1) = m_n or a(n+2) = m_n. Will this pattern last forever?
%H A360613 Rémy Sigrist, <a href="/A360613/b360613.txt">Table of n, a(n) for n = 1..10000</a>
%H A360613 Rémy Sigrist, <a href="/A360613/a360613.txt">C program</a>
%F A360613 a(n) < a(n+2).
%e A360613 The first terms, alongside the corresponding products, are:
%e A360613   n   a(n)  Corresponding products
%e A360613   --  ----  --------------------------
%e A360613    1     1
%e A360613    2     1   1
%e A360613    3     2   2
%e A360613    4     3   3,  6
%e A360613    5     4   4, 12
%e A360613    6     5   5, 10, 20
%e A360613    7     7   7, 21, 35
%e A360613    8     8   8, 16, 32,  56
%e A360613    9     9   9, 27, 45,  72
%e A360613   10    11  11, 22, 44,  77,  99
%e A360613   11    13  13, 39, 65, 104, 143
%e A360613   12    15  15, 30, 60, 105, 135, 195
%o A360613 (C) See Links section.
%Y A360613 Cf. A000695, A062880, A066724, A360627-A360628 (bisections), A360633 (products).
%K A360613 nonn
%O A360613 1,3
%A A360613 _Rémy Sigrist_, Feb 14 2023