This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A360631 #19 May 05 2025 15:48:35 %S A360631 1,2,4,10,22,44,91,172,326,595,1066,1849,3204,5365,8921,14581,23558, %T A360631 37440,59127,91957,142060,217015,328939,493917,737249,1090432,1603439, %U A360631 2341094,3398313,4900740,7032809,10031010,14241165,20112575,28276657,39566635,55140425,76499692,105731884,145550924 %N A360631 Number of sets of integer-sided rectangular pieces that can tile a 2 X n rectangle. %H A360631 Robin Visser, <a href="/A360631/b360631.txt">Table of n, a(n) for n = 0..40</a> %e A360631 From _Robin Visser_, May 01 2025: (Start) %e A360631 For n = 1, there are a(1) = 2 possible sets of rectangular pieces that can tile a 2 x 1 rectangle: one 1 x 2 piece; or two 1 x 1 pieces. %e A360631 For n = 2, there are a(2) = 4 possible sets of rectangular pieces that can tile a 2 x 2 rectangle: one 2 x 2 piece; two 1 x 2 pieces; one 1 x 2 piece and two 1 x 1 pieces; or four 1 x 1 pieces. %e A360631 For n = 3, there are a(3) = 10 possible sets of rectangular pieces that can tile a 2 x 3 rectangle: one 2 x 3 piece; one 2 x 2 piece and one 1 x 2 piece; one 2 x 2 piece and two 1 x 1 pieces; two 1 x 3 pieces; one 1 x 3 piece, one 1 x 2 piece, and one 1 x 1 piece; one 1 x 3 piece and three 1 x 1 pieces; three 1 x 2 pieces; two 1 x 2 pieces and two 1 x 1 pieces; one 1 x 2 piece and four 1 x 1 pieces; or six 1 x 1 pieces. (End) %o A360631 (Python) %o A360631 def a(n): %o A360631 A, B = [set() for i in range(n+1)], [set() for i in range(n+1)] %o A360631 A[0].add(()); B[0].add(()); %o A360631 for (m,k) in [(x,y) for x in range(1, n+1) for y in range(1, x+1)]: %o A360631 for p in A[m-k]: A[m].add(tuple(sorted(list(p)+[k]))) %o A360631 for (p, q) in [(x,y) for x in A[m] for y in A[m]]: %o A360631 B[m].add(tuple(sorted([(1,c) for c in p]+[(1,c) for c in q]))) %o A360631 for p in B[m-k]: B[m].add(tuple(sorted(list(p)+[tuple(sorted((2,k)))]))) %o A360631 return len(B[n]) # _Robin Visser_, May 01 2025 %Y A360631 Second column of A360629. %Y A360631 Cf. A000041 (1 x n rectangle), A360632 (3 x n rectangle). %K A360631 nonn %O A360631 0,2 %A A360631 _Pontus von Brömssen_, Feb 14 2023 %E A360631 More terms from _Robin Visser_, May 04 2025 %E A360631 a(0) = 1 prepended by _Robin Visser_, May 05 2025