cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360638 Number of sets of nonempty words over binary alphabet where each letter occurs n times.

This page as a plain text file.
%I A360638 #16 Dec 09 2023 09:00:03
%S A360638 1,3,16,100,593,3497,20316,116378,658214,3679450,20350028,111459648,
%T A360638 605060633,3257784589,17408647968,92378535290,487031130699,
%U A360638 2552197485757,13298890952222,68930923717598,355507581655752,1824924721216084,9326440815314046,47464093855706540
%N A360638 Number of sets of nonempty words over binary alphabet where each letter occurs n times.
%H A360638 Alois P. Heinz, <a href="/A360638/b360638.txt">Table of n, a(n) for n = 0..380</a>
%F A360638 a(n) = A360634(2n,n).
%F A360638 a(n) mod 2 = 1 <=> n in { A080277 } U {0}.
%e A360638 a(0) = 1: {}.
%e A360638 a(1) = 3: {ab}, {ba}, {a,b}.
%e A360638 a(2) = 16: {aabb}, {abab}, {abba}, {baab}, {baba}, {bbaa}, {a,abb}, {a,bab}, {a,bba}, {aa,bb}, {aab,b}, {ab,ba}, {aba,b}, {b,baa}, {a,ab,b}, {a,b,ba}.
%p A360638 g:= proc(n, i, j) option remember; expand(`if`(j=0, 1, `if`(i<0, 0, add(
%p A360638       g(n, i-1, j-k)*x^(i*k)*binomial(binomial(n, i), k), k=0..j))))
%p A360638     end:
%p A360638 b:= proc(n, i) option remember; expand(`if`(n=0, 1,
%p A360638      `if`(i<1, 0, add(b(n-i*j, i-1)*g(i$2, j), j=0..n/i))))
%p A360638     end:
%p A360638 a:= n-> coeff(b(2*n$2), x, n):
%p A360638 seq(a(n), n=0..31);
%t A360638 g[n_, i_, j_] := g[n, i, j] = Expand[If[j == 0, 1, If[i < 0, 0, Sum[
%t A360638     g[n, i - 1, j - k]*x^(i*k)*Binomial[Binomial[n, i], k], {k, 0, j}]]]];
%t A360638 b[n_, i_] := b[n, i] = Expand[If[n == 0, 1,
%t A360638     If[i < 1, 0, Sum[b[n - i*j, i - 1]*g[i, i, j], {j, 0, n/i}]]]];
%t A360638 a[n_] := Coefficient[b[2n, 2n], x, n];
%t A360638 Table[a[n], {n, 0, 31}] (* _Jean-François Alcover_, Dec 09 2023, after _Alois P. Heinz_ *)
%Y A360638 Cf. A080277, A360626 (the same for multisets), A360634.
%K A360638 nonn
%O A360638 0,2
%A A360638 _Alois P. Heinz_, Feb 14 2023