cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A360640 a(n) is the start of the least run of exactly n consecutive odd numbers that are A000120-perfect numbers (A175522).

Original entry on oeis.org

25, 123, 31803, 8019811, 130194395
Offset: 1

Views

Author

Amiram Eldar, Feb 15 2023

Keywords

Comments

a(6) > 2*10^11, if it exists.

Examples

			Table of values of A000120 and A093653 for k = a(n), a(n)+2, ..., a(n)+2*(n-1):
  n |      a(n)              A000120(k)              A093653(k)
  --+----------------------------------------------------------
  1 |        25                       3                       6
  2 |       123                    6, 6.                 12, 12
  3 |     31803              10, 10, 11              20, 20, 22
  4 |   8019811          15, 15, 16, 15          30, 30, 32, 30
  5 | 130194395  17, 17, 18, 15, 16, 16  34, 34, 36, 30, 32, 32
		

Crossrefs

Programs

  • Mathematica
    q[n_] := DivisorSum[n, DigitCount[#, 2, 1] &] == 2 * DigitCount[n, 2, 1]; seq[len_, nmax_] := Module[{s = Table[0, {len}], v = {}, n = 1, c = 0, m}, While[c <= len && n <= nmax, If[q[n], v = Join[v, {n}], m = Length[v]; v = {}; If[0 < m <= len && s[[m]] == 0, c++; s[[m]] = n - 2*m]]; n += 2]; s]; seq[3, 10^5]
  • PARI
    lista(len, nmax) = {my(s = vector(len), v=[], n = 1, c = 0, m); while(c <= len && n <= nmax, if(sumdiv(n, d, hammingweight(d)) == 2 * hammingweight(n), v = concat(v, n), m =#v; v = []; if(0 < m && m <= len && s[m] == 0, c++; s[m] = n - 2*m)); n += 2); s};
Showing 1-1 of 1 results.