cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360641 Numbers k where A093653(k)/A000120(k) sets a new record.

Original entry on oeis.org

1, 2, 4, 8, 12, 16, 24, 36, 66, 72, 132, 144, 264, 420, 528, 840, 1026, 1056, 1680, 2052, 4104, 8208, 16416, 32832, 65664, 73920, 84000, 110880, 118800, 131328, 133380, 237600, 263340, 266760, 526680, 533520, 1053360, 1067040, 2106720, 2134080, 3160080, 4213440
Offset: 1

Views

Author

Amiram Eldar, Feb 15 2023

Keywords

Comments

Analogous to superabundant numbers (A004394) as A175526 is analogous to abundant numbers (A005101).
The corresponding record values are 1, 2, 3, 4, 9/2, 5, 6, 15/2, 8, 10, ... .
This sequence is infinite since A093653(k)/A000120(k) is unbounded: A093653(2^m)/A000120(2^m) = m+1 for all m >= 0.

Examples

			The values of A093653(k)/A000120(k) for k=1..10 are 1, 2, 3/2, 3, 3/2, 3, 4/3, 4, 5/2 and 3. The record values, 1, 2, 3 and 4, occur at 1, 2, 4 and 8, the first 4 terms of this sequence.
		

Crossrefs

Programs

  • Mathematica
    seq[nmax_] := Module[{s = {}, rm = 0, r}, Do[If[(r = DivisorSum[n, DigitCount[#, 2, 1] &]/DigitCount[n, 2, 1]) > rm, rm = r; AppendTo[s, n]], {n, 1, nmax}]; s]; seq[10^4]
  • PARI
    lista(kmax) = {my(rm = 0, r); for(k = 1, kmax, r = sumdiv(k, d, hammingweight(d))/hammingweight(k); if(r > rm, rm = r; print1(k, ", "))); }
    
  • Python
    # uses imports and definitions in A093653, A000120
    from itertools import count, islice
    def f(n): return A093653(n)/A000120(n)
    def agen(r=0): yield from ((m, r:=fm)[0] for m in count(1) if (fm:=f(m))>r)
    print(list(islice(agen(), 34))) # Michael S. Branicky, Feb 15 2023