A360642 a(n) is the least number k such that A093653(k)/A000120(k) = n.
1, 2, 4, 8, 16, 24, 64, 66, 84, 72, 210, 132, 450, 792, 288, 264, 1044, 672, 5328, 528, 1344, 840, 1026, 1056, 4116, 1800, 4128, 2112, 5124, 3780, 6480, 2184, 3360, 8352, 11088, 8448, 4680, 50700, 4200, 4368, 20880, 8280, 13320, 13440, 12420, 4104, 46200, 8736
Offset: 1
Examples
a(1) = 1 since A093653(1)/A000120(1) = 1/1 = 1. a(2) = 2 since A093653(2)/A000120(2) = 2/1 = 2, and 2 is the least number with this property. a(3) = 4 since A093653(4)/A000120(4) = 3/1 = 3, and 4 is the least number with this property.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
seq[len_, nmax_] := Module[{s = Table[0, {len}], c = 0, n = 1, i}, While[c < len && n <= nmax, i = DivisorSum[n, DigitCount[#, 2, 1] &]/DigitCount[n, 2, 1]; If[IntegerQ[i] && i <= len && s[[i]] == 0, c++; s[[i]] = n]; n++]; TakeWhile[s, # > 0 &]]; seq[50, 10^5]
-
PARI
lista(len, nmax) = {my(s = vector(len), c = 0, n = 1, i); while(c < len && n <= nmax, i = sumdiv(n, d, hammingweight(d))/hammingweight(n); if(denominator(i) == 1 && i <= len && s[i] == 0, c++; s[i] = n); n++); s }
-
Python
# uses imports and definitions in A093653, A000120 from itertools import count, islice def f(n): q, r = divmod(A093653(n), A000120(n)); return q if r == 0 else 0 def agen(): n, adict = 1, dict() for k in count(1): v = f(k) if v not in adict: adict[v] = k while n in adict: yield adict[n]; n += 1 print(list(islice(agen(), 48))) # Michael S. Branicky, Feb 15 2023
Formula
a(n) <= 2^(n-1).
Comments