This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A360651 #11 Feb 15 2023 15:24:07 %S A360651 1,3,3,10,20,10,35,105,105,35,126,504,756,504,126,462,2310,4620,4620, %T A360651 2310,462,1716,10296,25740,34320,25740,10296,1716,6435,45045,135135, %U A360651 225225,225225,135135,45045,6435,24310,194480,680680,1361360,1701700,1361360,680680,194480,24310 %N A360651 Triangle T(n, m) = (n - m + 1)*C(2*n + 1, m)*C(2*n - m + 2, n - m + 1)/(2*n - m + 2). %F A360651 G.f.: 2/(1 - 4*x + sqrt(1 - 4*x - 4*x*y) - 4*x*y). %F A360651 T(n, k) = binomial(n, k)*CatalanNumber(n)*(2*n + 1). - _Peter Luschny_, Feb 15 2023 %e A360651 Triangle T(n, m) starts: %e A360651 [0] 1; %e A360651 [1] 3, 3; %e A360651 [2] 10, 20, 10; %e A360651 [3] 35, 105, 105, 35; %e A360651 [4] 126, 504, 756, 504, 126; %e A360651 [5] 462, 2310, 4620, 4620, 2310, 462; %e A360651 [6] 1716, 10296, 25740, 34320, 25740, 10296, 1716; %e A360651 [7] 6435, 45045, 135135, 225225, 225225, 135135, 45045, 6435; %p A360651 CatalanNumber := n -> binomial(2*n, n)/(n + 1): %p A360651 T := (n, k) -> (2*n + 1)*CatalanNumber(n)*binomial(n, k): %p A360651 seq(seq(T(n, k), k = 0..n), n = 0..8); # _Peter Luschny_, Feb 15 2023 %o A360651 (Maxima) %o A360651 T(n,m):=if n<m then 0 else ((n-m+1)*binomial(2*n+1,m)*binomial(2*n-m+2,n-m+1))/(2*n-m+2); %Y A360651 Cf. A001700, A085880, A069720 (row sums). %K A360651 nonn,tabl %O A360651 0,2 %A A360651 _Vladimir Kruchinin_, Feb 15 2023