This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A360657 #35 Dec 17 2023 11:22:07 %S A360657 1,0,1,0,2,1,0,9,5,1,0,64,37,9,1,0,625,369,97,14,1,0,7776,4651,1275, %T A360657 205,20,1,0,117649,70993,19981,3410,380,27,1,0,2097152,1273609,365001, %U A360657 64701,7770,644,35,1,0,43046721,26269505,7628545,1388310,174951,15834,1022,44,1 %N A360657 Number triangle T associated with 2-Stirling numbers and Lehmer-Comtet numbers (see Comments and Formula section). %C A360657 Triangle T is created using 2-Stirling numbers of the first (A049444) and the second (A143494) kind. The unusual construction is as follows: %C A360657 Define A(n, k) by recurrence A(n, k) = A(n-1, k-1) + (k+1) * A(n-1, k) for 0 < k < n with initial values A(n, n) = 1, n >= 0, and A(n, 0) = 0, n > 0. A without column k = 0 is A143494. Let B = A^(-1) matrix inverse of A. B without column k = 0 is A049444. Now define T(m, k) = Sum_{i=0..m-k} B(m-k, i) * A(m-1+i, m-1) for 0 < k <= m = n/2 and T(m, 0) = 0^m for 0 <= m = n/2; T(i, j) = 0 if i < j or j < 0. %C A360657 Matrix inverse of T is A360753. - _Werner Schulte_, Feb 21 2023 %C A360657 Conjecture: the transpose of this array is the upper triangular matrix U in the LU factorization of the array of Stirling numbers of the second kind read as a square array; the corresponding lower triangular array L is the triangle of Stirling numbers of the second kind. See the example section below. - _Peter Bala_, Oct 10 2023 %H A360657 Wikipedia, <a href="https://en.wikipedia.org/wiki/LU_decomposition">LU decomposition</a> %H A360657 Aimin Xu, <a href="https://doi.org/10.2298/FIL1906659X">Determinants Involving the Numbers of the Stirling-Type</a>, Filomat 33:6 (2019), 1659-1666. %F A360657 For the definition of triangle T see Comments section. %F A360657 Conjectured formulas: %F A360657 1. T(n, k) = (Sum_{i=k..n} A354794(n, i) * (i-1)!) / (k-1)! for 0 < k <= n. %F A360657 2. T(n, k) - k * T(n, k+1) = A354794(n, k) for 0 <= k <= n. %F A360657 3. T(n, 1) = A000169(n) = n^(n-1) for n > 0. %F A360657 4. T(n, 2) = A055869(n-1) = n^(n-1) - (n-1)^(n-1) for n > 1. %F A360657 5. T(n, k) = (Sum_{i=0..k-1} (-1)^i * binomial(k-1, i) * (n-i)^(n-1)) / (k-1)! for 0 < k <= n. %F A360657 6. Sum_{i=1..n} (-1)^(n-i) * binomial(n-1+k, i-1) * T(n, i) * (i-1)! = (k-1)^(n-1) for n > 0 and k >= 0. %F A360657 7. Matrix product of A354795 and T without column 0 equals A094587. %F A360657 8. Matrix product of T and A354795 without column 0 equals A088956. %F A360657 9. E.g.f. of column k > 0: Sum_{n>=k} T(n, k) * t^(n-1) / (n-1)! = (W(-t)/(-t)) * (Sum_{n>=k} A354794(n, k) * t^(n-1) / (n-1)!) where W is the Lambert_W-function. %e A360657 Triangle T(n, k), 0 <= k <= n, starts: %e A360657 n\k : 0 1 2 3 4 5 6 7 8 9 %e A360657 ========================================================================== %e A360657 0 : 1 %e A360657 1 : 0 1 %e A360657 2 : 0 2 1 %e A360657 3 : 0 9 5 1 %e A360657 4 : 0 64 37 9 1 %e A360657 5 : 0 625 369 97 14 1 %e A360657 6 : 0 7776 4651 1275 205 20 1 %e A360657 7 : 0 117649 70993 19981 3410 380 27 1 %e A360657 8 : 0 2097152 1273609 365001 64701 7770 644 35 1 %e A360657 9 : 0 43046721 26269505 7628545 1388310 174951 15834 1022 44 1 %e A360657 etc. %e A360657 From _Peter Bala_, Oct 10 2023: (Start) %e A360657 LU factorization of the square array of Stirling numbers of the second kind (apply Xu, Lemma 2.2): %e A360657 / 1 \ / 1 1 1 1 ...\ / 1 1 1 1 ... \ %e A360657 | 1 1 || 2 5 9 ...| | 1 3 6 10 ... | %e A360657 | 1 3 1 || 9 37 ...| = | 1 7 25 65 ... | %e A360657 | 1 7 6 1 || 64 ...| | 1 15 90 350 ... | %e A360657 | ... || ...| | ... | %e A360657 (End) %o A360657 (PARI) tabl(m) = {my(n=2*m, A = matid(n), B, T); for( i = 2, n, for( j = 2, i, A[i, j] = A[i-1, j-1] + j * A[i-1, j] ) ); B = A^(-1); T = matrix( m, m, i, j, if( j == 1, 0^(i-1), sum( r = 0, i-j, B[i-j+1, r+1] * A[i-1+r, i-1] ) ) ); } %Y A360657 Cf. A049444, A143494, A354794, A354795, A088956, A094587. %Y A360657 Cf. A000007 (column 0), A000169 (column 1), A055869 (column 2). %Y A360657 Cf. A000012 (main diagonal), A000096 (1st subdiagonal), A360753 (matrix inverse). %K A360657 nonn,easy,tabl %O A360657 0,5 %A A360657 _Werner Schulte_, Feb 15 2023