cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360671 Number of multisets whose right half (inclusive) sums to n.

This page as a plain text file.
%I A360671 #9 Mar 11 2023 15:07:46
%S A360671 1,2,5,8,16,21,42,51,90,121,185,235,386,465,679,908,1261,1580,2238,
%T A360671 2770,3827,4831,6314,7910,10619,13074,16813,21049,26934,33072,42445,
%U A360671 51679,65264,79902,99309,121548,151325,182697,224873,272625,334536,401999,491560,588723
%N A360671 Number of multisets whose right half (inclusive) sums to n.
%H A360671 Andrew Howroyd, <a href="/A360671/b360671.txt">Table of n, a(n) for n = 0..1000</a>
%F A360671 G.f.: 1 + Sum_{k>=1} x^k*(2 - x^k)/((1 - x^k)^(k+1) * Product_{j=1..k-1} (1-x^j)). - _Andrew Howroyd_, Mar 11 2023
%e A360671 The a(0) = 1 through a(4) = 16 multisets:
%e A360671   {}  {1}    {2}        {3}            {4}
%e A360671       {1,1}  {1,2}      {1,3}          {1,4}
%e A360671              {2,2}      {2,3}          {2,4}
%e A360671              {1,1,1}    {3,3}          {3,4}
%e A360671              {1,1,1,1}  {1,1,2}        {4,4}
%e A360671                         {1,1,1,2}      {1,1,3}
%e A360671                         {1,1,1,1,1}    {1,2,2}
%e A360671                         {1,1,1,1,1,1}  {2,2,2}
%e A360671                                        {1,1,1,3}
%e A360671                                        {1,1,2,2}
%e A360671                                        {1,2,2,2}
%e A360671                                        {2,2,2,2}
%e A360671                                        {1,1,1,1,2}
%e A360671                                        {1,1,1,1,1,2}
%e A360671                                        {1,1,1,1,1,1,1}
%e A360671                                        {1,1,1,1,1,1,1,1}
%e A360671 For example, the multiset y = {1,1,1,1,2} has right half (inclusive) {1,1,2}, with sum 4, so y is counted under a(4).
%t A360671 Table[Length[Select[Join@@IntegerPartitions/@Range[0,3*k], Total[Take[#,Ceiling[Length[#]/2]]]==k&]],{k,0,15}]
%o A360671 (PARI) seq(n)={my(s=1 + O(x*x^n), p=s); for(k=1, n, s += p*x^k*(2-x^k)/(1-x^k + O(x*x^(n-k)))^(k+1); p /= 1 - x^k); Vec(s)} \\ _Andrew Howroyd_, Mar 11 2023
%Y A360671 The exclusive version is A360673.
%Y A360671 Column sums of A360675 with rows reversed.
%Y A360671 The case of sets is A360955, exclusive A360954.
%Y A360671 The even-length case is A360956.
%Y A360671 A360672 counts partitions by left sum (exclusive).
%Y A360671 A360679 gives right sum (inclusive) of prime indices.
%Y A360671 Cf. A000041, A347044, A361200, A361201.
%K A360671 nonn
%O A360671 0,2
%A A360671 _Gus Wiseman_, Mar 09 2023
%E A360671 Terms a(24) and beyond from _Andrew Howroyd_, Mar 11 2023