cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360673 Number of multisets of positive integers whose right half (exclusive) sums to n.

This page as a plain text file.
%I A360673 #15 Mar 11 2023 15:07:42
%S A360673 1,2,7,13,27,37,73,89,156,205,315,387,644,749,1104,1442,2015,2453,
%T A360673 3529,4239,5926,7360,9624,11842,16115,19445,25084,31137,39911,48374,
%U A360673 62559,75135,95263,115763,143749,174874,218614,261419,321991,388712,477439,569968,698493
%N A360673 Number of multisets of positive integers whose right half (exclusive) sums to n.
%H A360673 Andrew Howroyd, <a href="/A360673/b360673.txt">Table of n, a(n) for n = 0..1000</a>
%F A360673 G.f.: 1 + Sum_{k>=1} x^k*(2 - x^k)/((1 - x^k)^(k+2) * Product_{j=1..k-1} (1-x^j)). - _Andrew Howroyd_, Mar 11 2023
%e A360673 The a(0) = 1 through a(3) = 13 multisets:
%e A360673   {}  {1,1}    {1,2}        {1,3}
%e A360673       {1,1,1}  {2,2}        {2,3}
%e A360673                {1,1,2}      {3,3}
%e A360673                {1,2,2}      {1,1,3}
%e A360673                {2,2,2}      {1,2,3}
%e A360673                {1,1,1,1}    {1,3,3}
%e A360673                {1,1,1,1,1}  {2,2,3}
%e A360673                             {2,3,3}
%e A360673                             {3,3,3}
%e A360673                             {1,1,1,2}
%e A360673                             {1,1,1,1,2}
%e A360673                             {1,1,1,1,1,1}
%e A360673                             {1,1,1,1,1,1,1}
%e A360673 For example, the multiset y = {1,1,1,1,2} has right half (exclusive) {1,2}, with sum 3, so y is counted under a(3).
%t A360673 Table[Length[Select[Join@@IntegerPartitions/@Range[0,3*k], Total[Take[#,Floor[Length[#]/2]]]==k&]],{k,0,15}]
%o A360673 (PARI) seq(n)={my(s=1 + O(x*x^n), p=s); for(k=1, n, s += p*x^k*(2-x^k)/(1-x^k + O(x*x^(n-k)))^(k+2); p /= 1 - x^k); Vec(s)} \\ _Andrew Howroyd_, Mar 11 2023
%Y A360673 The inclusive version is A360671.
%Y A360673 Column sums of A360672.
%Y A360673 The case of sets is A360954, inclusive A360955.
%Y A360673 The even-length case is A360956.
%Y A360673 A359893 and A359901 count partitions by median.
%Y A360673 First for prime indices, second for partitions, third for prime factors:
%Y A360673 - A360676 gives left sum (exclusive), counted by A360672, product A361200.
%Y A360673 - A360677 gives right sum (exclusive), counted by A360675, product A361201.
%Y A360673 - A360678 gives left sum (inclusive), counted by A360675, product A347043.
%Y A360673 - A360679 gives right sum (inclusive), counted by A360672, product A347044.
%Y A360673 Cf. A000041, A360616, A360617, A360674, A360675, A360953.
%K A360673 nonn
%O A360673 0,2
%A A360673 _Gus Wiseman_, Mar 04 2023
%E A360673 Terms a(21) and beyond from _Andrew Howroyd_, Mar 11 2023