cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360674 Number of integer partitions of 2n whose left half (exclusive) and right half (inclusive) both sum to n.

This page as a plain text file.
%I A360674 #13 Mar 09 2023 20:03:32
%S A360674 1,1,3,4,7,6,12,9,16,15,21,16,34,22,33,36,47,36,62,44,75,68,78,68,120,
%T A360674 93,113,117,151,122,195,148,209,197,220,226,315,249,304,309,402,332,
%U A360674 463,387,496,515,539,514,712,609,738,723,845,774,983,914,1111
%N A360674 Number of integer partitions of 2n whose left half (exclusive) and right half (inclusive) both sum to n.
%C A360674 Of course, only one of the two conditions is necessary.
%F A360674 a(n) = A360672(2n,n).
%e A360674 The a(1) = 1 through a(6) = 12 partitions:
%e A360674   (11)  (22)    (33)      (44)        (55)          (66)
%e A360674         (211)   (321)     (422)       (532)         (633)
%e A360674         (1111)  (21111)   (431)       (541)         (642)
%e A360674                 (111111)  (2222)      (32221)       (651)
%e A360674                           (22211)     (211111111)   (3333)
%e A360674                           (2111111)   (1111111111)  (33222)
%e A360674                           (11111111)                (33321)
%e A360674                                                     (42222)
%e A360674                                                     (222222)
%e A360674                                                     (2222211)
%e A360674                                                     (21111111111)
%e A360674                                                     (111111111111)
%e A360674 For example, the partition y = (3,2,2,2,1) has halves (3,2) and (2,2,1), both with sum 5, so y is counted under a(5).
%t A360674 Table[Length[Select[IntegerPartitions[2n], Total[Take[#,Floor[Length[#]/2]]]==n&]],{n,0,15}]
%o A360674 (Python)
%o A360674 def accel_asc(n):
%o A360674     a = [0 for i in range(n + 1)]
%o A360674     k = 1
%o A360674     y = n - 1
%o A360674     while k != 0:
%o A360674         x = a[k - 1] + 1
%o A360674         k -= 1
%o A360674         while 2 * x <= y:
%o A360674             a[k] = x
%o A360674             y -= x
%o A360674             k += 1
%o A360674         l = k + 1
%o A360674         while x <= y:
%o A360674             a[k] = x
%o A360674             a[l] = y
%o A360674             yield a[:k + 2]
%o A360674             x += 1
%o A360674             y -= 1
%o A360674         a[k] = x + y
%o A360674         y = x + y - 1
%o A360674         yield a[:k + 1]
%o A360674 for y in range(1000):
%o A360674     num = 0
%o A360674     for x in accel_asc(2*y):
%o A360674         stop = len(x)//2+1
%o A360674         if len(x) % 2 == 0:
%o A360674             stop -= 1
%o A360674         right = x[0:stop]
%o A360674         left = x[stop:]
%o A360674         if sum(right) == sum(left):
%o A360674             num += 1
%o A360674     print(y,num)
%o A360674 # _David Consiglio, Jr._, Mar 09 2023
%Y A360674 The even-length case is A000005.
%Y A360674 Central diagonal of A360672.
%Y A360674 These partitions have ranks A360953.
%Y A360674 A008284 counts partitions by length, row sums A000041.
%Y A360674 A359893 and A359901 count partitions by median.
%Y A360674 First for prime indices, second for partitions, third for prime factors:
%Y A360674 - A360676 gives left sum (exclusive), counted by A360672, product A361200.
%Y A360674 - A360677 gives right sum (exclusive), counted by A360675, product A361201.
%Y A360674 - A360678 gives left sum (inclusive), counted by A360675, product A347043.
%Y A360674 - A360679 gives right sum (inclusive), counted by A360672, product A347044.
%Y A360674 Cf. A237363, A360254, A360671, A360673, A360682.
%K A360674 nonn
%O A360674 0,3
%A A360674 _Gus Wiseman_, Mar 04 2023
%E A360674 More terms from _David Consiglio, Jr._, Mar 09 2023