A360675 Triangle read by rows where T(n,k) is the number of integer partitions of n whose right half (exclusive) sums to k, where k ranges from 0 to n.
1, 1, 0, 1, 1, 0, 1, 2, 0, 0, 1, 2, 2, 0, 0, 1, 3, 3, 0, 0, 0, 1, 3, 5, 2, 0, 0, 0, 1, 4, 6, 4, 0, 0, 0, 0, 1, 4, 9, 5, 3, 0, 0, 0, 0, 1, 5, 10, 10, 4, 0, 0, 0, 0, 0, 1, 5, 13, 12, 9, 2, 0, 0, 0, 0, 0, 1, 6, 15, 18, 11, 5, 0, 0, 0, 0, 0, 0
Offset: 0
Examples
Triangle begins: 1 1 0 1 1 0 1 2 0 0 1 2 2 0 0 1 3 3 0 0 0 1 3 5 2 0 0 0 1 4 6 4 0 0 0 0 1 4 9 5 3 0 0 0 0 1 5 10 10 4 0 0 0 0 0 1 5 13 12 9 2 0 0 0 0 0 1 6 15 18 11 5 0 0 0 0 0 0 1 6 18 22 20 6 4 0 0 0 0 0 0 1 7 20 29 26 13 5 0 0 0 0 0 0 0 1 7 24 34 37 19 11 2 0 0 0 0 0 0 0 1 8 26 44 46 30 16 5 0 0 0 0 0 0 0 0 1 8 30 50 63 40 27 8 4 0 0 0 0 0 0 0 0 1 9 33 61 75 61 36 15 6 0 0 0 0 0 0 0 0 0 1 9 37 70 96 75 61 21 12 3 0 0 0 0 0 0 0 0 0 For example, row n = 9 counts the following partitions: (9) (81) (72) (63) (54) (441) (432) (333) (3222) (531) (522) (3321) (21111111) (621) (4311) (4221) (111111111) (711) (5211) (22221) (6111) (222111) (32211) (321111) (33111) (411111) (42111) (2211111) (51111) (3111111) For example, the partition y = (3,2,2,1,1) has right half (exclusive) (1,1), with sum 2, so y is counted under T(9,2).
Crossrefs
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n], Total[Take[#,-Floor[Length[#]/2]]]==k&]],{n,0,18},{k,0,n}]
Comments