cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360676 Sum of the left half (exclusive) of the prime indices of n.

This page as a plain text file.
%I A360676 #14 Feb 03 2025 02:23:35
%S A360676 0,0,0,1,0,1,0,1,2,1,0,1,0,1,2,2,0,1,0,1,2,1,0,2,3,1,2,1,0,1,0,2,2,1,
%T A360676 3,2,0,1,2,2,0,1,0,1,2,1,0,2,4,1,2,1,0,3,3,2,2,1,0,2,0,1,2,3,3,1,0,1,
%U A360676 2,1,0,2,0,1,2,1,4,1,0,2,4,1,0,2,3,1,2
%N A360676 Sum of the left half (exclusive) of the prime indices of n.
%C A360676 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%H A360676 Robert Israel, <a href="/A360676/b360676.txt">Table of n, a(n) for n = 1..10000</a>
%F A360676 A360676(n) + A360679(n) = A001222(n).
%F A360676 A360677(n) + A360678(n) = A001222(n).
%e A360676 The prime indices of 810 are {1,2,2,2,2,3}, with left half (exclusive) {1,2,2}, so a(810) = 5.
%e A360676 The prime indices of 3675 are {2,3,3,4,4}, with left half (exclusive) {2,3}, so a(3675) = 5.
%p A360676 f:= proc(n) local F,i,t;
%p A360676   F:= [seq(numtheory:-pi(t[1])$t[2], t = sort(ifactors(n)[2],(a,b) -> a[1] < b[1]))];
%p A360676   add(F[i],i=1..floor(nops(F)/2))
%p A360676 end proc:
%p A360676 map(f, [$1..100]); # _Robert Israel_, Feb 02 2025
%t A360676 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A360676 Table[Total[Take[prix[n],Floor[Length[prix[n]]/2]]],{n,100}]
%Y A360676 Positions of 0's are 1 and A000040.
%Y A360676 Positions of first appearances are 1 and A001248.
%Y A360676 These partitions are counted by A360675, right A360672.
%Y A360676 A112798 lists prime indices, length A001222, sum A056239, median* A360005.
%Y A360676 A360616 gives half of bigomega (exclusive), inclusive A360617.
%Y A360676 A360673 counts multisets by right sum (exclusive), inclusive A360671.
%Y A360676 First for prime indices, second for partitions, third for prime factors:
%Y A360676 - A360676 gives left sum (exclusive), counted by A360672, product A361200.
%Y A360676 - A360677 gives right sum (exclusive), counted by A360675, product A361201.
%Y A360676 - A360678 gives left sum (inclusive), counted by A360675, product A347043.
%Y A360676 - A360679 gives right sum (inclusive), counted by A360672, product A347044.
%Y A360676 Cf. A026424, A280076, A359912, A360006, A360457, A360674.
%K A360676 nonn
%O A360676 1,9
%A A360676 _Gus Wiseman_, Mar 04 2023