This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A360679 #6 Mar 07 2023 22:10:16 %S A360679 0,1,2,1,3,2,4,2,2,3,5,3,6,4,3,2,7,4,8,4,4,5,9,3,3,6,4,5,10,5,11,3,5, %T A360679 7,4,4,12,8,6,4,13,6,14,6,5,9,15,4,4,6,7,7,16,4,5,5,8,10,17,5,18,11,6, %U A360679 3,6,7,19,8,9,7,20,5,21,12,6,9,5,8,22,5,4 %N A360679 Sum of the right half (inclusive) of the prime indices of n. %C A360679 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %F A360679 A360676(n) + A360679(n) = A001222(n). %F A360679 A360677(n) + A360678(n) = A001222(n). %e A360679 The prime indices of 810 are {1,2,2,2,2,3}, with right half (inclusive) {2,2,3}, so a(810) = 7. %e A360679 The prime indices of 3675 are {2,3,3,4,4}, with right half (inclusive) {3,4,4}, so a(3675) = 11. %t A360679 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A360679 Table[Total[Take[prix[n],-Ceiling[Length[prix[n]]/2]]],{n,100}] %Y A360679 Positions of first appearances are 1 and A001248. %Y A360679 The value k appears A360671(k) times, exclusive A360673. %Y A360679 These partitions are counted by A360672 with rows reversed. %Y A360679 The exclusive version is A360677. %Y A360679 The left version is A360678. %Y A360679 A112798 lists prime indices, length A001222, sum A056239, median* A360005. %Y A360679 A360616 gives half of bigomega (exclusive), inclusive A360617. %Y A360679 First for prime indices, second for partitions, third for prime factors: %Y A360679 - A360676 gives left sum (exclusive), counted by A360672, product A361200. %Y A360679 - A360677 gives right sum (exclusive), counted by A360675, product A361201. %Y A360679 - A360678 gives left sum (inclusive), counted by A360675, product A347043. %Y A360679 - A360679 gives right sum (inclusive), counted by A360672, product A347044. %Y A360679 Cf. A026424, A359912, A360006, A360007, A360457. %K A360679 nonn %O A360679 1,3 %A A360679 _Gus Wiseman_, Mar 05 2023