cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360679 Sum of the right half (inclusive) of the prime indices of n.

This page as a plain text file.
%I A360679 #6 Mar 07 2023 22:10:16
%S A360679 0,1,2,1,3,2,4,2,2,3,5,3,6,4,3,2,7,4,8,4,4,5,9,3,3,6,4,5,10,5,11,3,5,
%T A360679 7,4,4,12,8,6,4,13,6,14,6,5,9,15,4,4,6,7,7,16,4,5,5,8,10,17,5,18,11,6,
%U A360679 3,6,7,19,8,9,7,20,5,21,12,6,9,5,8,22,5,4
%N A360679 Sum of the right half (inclusive) of the prime indices of n.
%C A360679 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%F A360679 A360676(n) + A360679(n) = A001222(n).
%F A360679 A360677(n) + A360678(n) = A001222(n).
%e A360679 The prime indices of 810 are {1,2,2,2,2,3}, with right half (inclusive) {2,2,3}, so a(810) = 7.
%e A360679 The prime indices of 3675 are {2,3,3,4,4}, with right half (inclusive) {3,4,4}, so a(3675) = 11.
%t A360679 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A360679 Table[Total[Take[prix[n],-Ceiling[Length[prix[n]]/2]]],{n,100}]
%Y A360679 Positions of first appearances are 1 and A001248.
%Y A360679 The value k appears A360671(k) times, exclusive A360673.
%Y A360679 These partitions are counted by A360672 with rows reversed.
%Y A360679 The exclusive version is A360677.
%Y A360679 The left version is A360678.
%Y A360679 A112798 lists prime indices, length A001222, sum A056239, median* A360005.
%Y A360679 A360616 gives half of bigomega (exclusive), inclusive A360617.
%Y A360679 First for prime indices, second for partitions, third for prime factors:
%Y A360679 - A360676 gives left sum (exclusive), counted by A360672, product A361200.
%Y A360679 - A360677 gives right sum (exclusive), counted by A360675, product A361201.
%Y A360679 - A360678 gives left sum (inclusive), counted by A360675, product A347043.
%Y A360679 - A360679 gives right sum (inclusive), counted by A360672, product A347044.
%Y A360679 Cf. A026424, A359912, A360006, A360007, A360457.
%K A360679 nonn
%O A360679 1,3
%A A360679 _Gus Wiseman_, Mar 05 2023