This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A360680 #6 Feb 20 2023 07:54:33 %S A360680 1,2,6,30,49,152,210,513,1444,1776,1952,2310,2375,2664,2760,2960,3249, %T A360680 3864,3996,4140,4144,5796,5994,6072,6210,6440,6512,6517,6900,7176, %U A360680 7400,7696,8694,9025,9108,9384,10064,10120,10350,10488,10764,11248,11960,12167 %N A360680 Numbers for which the prime signature has the same mean as the first differences of 0-prepended prime indices. %C A360680 A number's (unordered) prime signature (row n of A118914) is the multiset of positive exponents in its prime factorization. %e A360680 The terms together with their prime indices begin: %e A360680 1: {} %e A360680 2: {1} %e A360680 6: {1,2} %e A360680 30: {1,2,3} %e A360680 49: {4,4} %e A360680 152: {1,1,1,8} %e A360680 210: {1,2,3,4} %e A360680 513: {2,2,2,8} %e A360680 1444: {1,1,8,8} %e A360680 1776: {1,1,1,1,2,12} %e A360680 1952: {1,1,1,1,1,18} %e A360680 2310: {1,2,3,4,5} %e A360680 2375: {3,3,3,8} %e A360680 2664: {1,1,1,2,2,12} %e A360680 2760: {1,1,1,2,3,9} %e A360680 2960: {1,1,1,1,3,12} %e A360680 For example, the prime indices of 2760 are {1,1,1,2,3,9}. The signature is (3,1,1,1), with mean 3/2. The first differences of 0-prepended prime indices are (1,0,0,1,1,6), with mean also 3/2. So 2760 is in the sequence. %t A360680 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A360680 Select[Range[1000],Mean[Length/@Split[prix[#]]] == Mean[Differences[Prepend[prix[#],0]]]&] %Y A360680 For indices instead of 0-prepended differences: A359903, counted by A360068. %Y A360680 For median instead of mean we have A360681. %Y A360680 A112798 = prime indices, length A001222, sum A056239, mean A326567/A326568. %Y A360680 A124010 gives prime signature, mean A088529/A088530. %Y A360680 A316413 = numbers whose prime indices have integer mean, complement A348551. %Y A360680 A326619/A326620 gives mean of distinct prime indices. %Y A360680 A360614/A360615 = mean of first differences of 0-prepended prime indices. %Y A360680 Cf. A340610, A359904, A359905, A360008, A360460, A360555, A360556. %K A360680 nonn %O A360680 1,2 %A A360680 _Gus Wiseman_, Feb 19 2023