cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360680 Numbers for which the prime signature has the same mean as the first differences of 0-prepended prime indices.

This page as a plain text file.
%I A360680 #6 Feb 20 2023 07:54:33
%S A360680 1,2,6,30,49,152,210,513,1444,1776,1952,2310,2375,2664,2760,2960,3249,
%T A360680 3864,3996,4140,4144,5796,5994,6072,6210,6440,6512,6517,6900,7176,
%U A360680 7400,7696,8694,9025,9108,9384,10064,10120,10350,10488,10764,11248,11960,12167
%N A360680 Numbers for which the prime signature has the same mean as the first differences of 0-prepended prime indices.
%C A360680 A number's (unordered) prime signature (row n of A118914) is the multiset of positive exponents in its prime factorization.
%e A360680 The terms together with their prime indices begin:
%e A360680       1: {}
%e A360680       2: {1}
%e A360680       6: {1,2}
%e A360680      30: {1,2,3}
%e A360680      49: {4,4}
%e A360680     152: {1,1,1,8}
%e A360680     210: {1,2,3,4}
%e A360680     513: {2,2,2,8}
%e A360680    1444: {1,1,8,8}
%e A360680    1776: {1,1,1,1,2,12}
%e A360680    1952: {1,1,1,1,1,18}
%e A360680    2310: {1,2,3,4,5}
%e A360680    2375: {3,3,3,8}
%e A360680    2664: {1,1,1,2,2,12}
%e A360680    2760: {1,1,1,2,3,9}
%e A360680    2960: {1,1,1,1,3,12}
%e A360680 For example, the prime indices of 2760 are {1,1,1,2,3,9}. The signature is (3,1,1,1), with mean 3/2. The first differences of 0-prepended prime indices are (1,0,0,1,1,6), with mean also 3/2. So 2760 is in the sequence.
%t A360680 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A360680 Select[Range[1000],Mean[Length/@Split[prix[#]]] == Mean[Differences[Prepend[prix[#],0]]]&]
%Y A360680 For indices instead of 0-prepended differences: A359903, counted by A360068.
%Y A360680 For median instead of mean we have A360681.
%Y A360680 A112798 = prime indices, length A001222, sum A056239, mean A326567/A326568.
%Y A360680 A124010 gives prime signature, mean A088529/A088530.
%Y A360680 A316413 = numbers whose prime indices have integer mean, complement A348551.
%Y A360680 A326619/A326620 gives mean of distinct prime indices.
%Y A360680 A360614/A360615 = mean of first differences of 0-prepended prime indices.
%Y A360680 Cf. A340610, A359904, A359905, A360008, A360460, A360555, A360556.
%K A360680 nonn
%O A360680 1,2
%A A360680 _Gus Wiseman_, Feb 19 2023