cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360681 Numbers for which the prime signature has the same median as the first differences of 0-prepended prime indices.

This page as a plain text file.
%I A360681 #5 Feb 19 2023 20:51:57
%S A360681 1,2,6,30,42,49,60,66,70,78,84,90,102,105,114,120,126,132,138,140,150,
%T A360681 154,156,168,174,186,198,204,210,222,228,234,246,258,264,270,276,280,
%U A360681 282,286,294,306,308,312,315,318,330,342,348,350,354,366,372,378,385
%N A360681 Numbers for which the prime signature has the same median as the first differences of 0-prepended prime indices.
%C A360681 A number's (unordered) prime signature (row n of A118914) is the multiset of positive exponents in its prime factorization.
%C A360681 The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).
%e A360681 The terms together with their prime indices begin:
%e A360681     1: {}
%e A360681     2: {1}
%e A360681     6: {1,2}
%e A360681    30: {1,2,3}
%e A360681    42: {1,2,4}
%e A360681    49: {4,4}
%e A360681    60: {1,1,2,3}
%e A360681    66: {1,2,5}
%e A360681    70: {1,3,4}
%e A360681    78: {1,2,6}
%e A360681    84: {1,1,2,4}
%e A360681    90: {1,2,2,3}
%e A360681 For example, the prime indices of 2760 are {1,1,1,2,3,9}. The signature is (3,1,1,1), with median 1. The first differences of 0-prepended prime indices are (1,0,0,1,1,6), with median 1/2. So 2760 is not in the sequence.
%t A360681 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A360681 Select[Range[100],Median[Length/@Split[prix[#]]] == Median[Differences[Prepend[prix[#],0]]]&]
%Y A360681 For distinct prime indices instead of 0-prepended differences: A360453.
%Y A360681 For mean instead of median we have A360680.
%Y A360681 A112798 = prime indices, length A001222, sum A056239, mean A326567/A326568.
%Y A360681 A124010 gives prime signature, sorted A118914, mean A088529/A088530.
%Y A360681 A325347 = partitions w/ integer median, strict A359907, complement A307683.
%Y A360681 A359893 and A359901 count partitions by median, odd-length A359902.
%Y A360681 Multisets with integer median:
%Y A360681 - For divisors (A063655) we have A139711, complement A139710.
%Y A360681 - For prime indices (A360005) we have A359908, complement A359912.
%Y A360681 - For distinct prime indices (A360457) we have A360550, complement A360551.
%Y A360681 - For distinct prime factors (A360458) we have A360552, complement A100367.
%Y A360681 - For prime factors (A360459) we have A359913, complement A072978.
%Y A360681 - For prime multiplicities (A360460) we have A360553, complement A360554.
%Y A360681 - For 0-prepended differences (A360555) we have A360556, complement A360557.
%Y A360681 Cf. A000975, A026424, A316413, A340610, A359904, A360006, A360248, A360558, A360687, A360688.
%K A360681 nonn
%O A360681 1,2
%A A360681 _Gus Wiseman_, Feb 19 2023