This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A360682 #6 Feb 20 2023 21:49:20 %S A360682 0,0,0,1,1,1,5,4,10,13,18,23,44,44,72,98,132,162,241,277,394,497,643, %T A360682 800,1076,1287,1660,2078,2604,3192,4065,4892,6113,7490,9166,11110, %U A360682 13717,16429,20033,24201,29143,34945,42251,50219,60253,71852,85503,101501,120899 %N A360682 Number of integer partitions of n of length > 2 whose second differences have median 0. %C A360682 The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length). %e A360682 The a(3) = 1 through a(9) = 13 partitions: %e A360682 (111) (1111) (11111) (222) (22111) (2222) (333) %e A360682 (321) (31111) (3221) (432) %e A360682 (2211) (211111) (3311) (531) %e A360682 (21111) (1111111) (22211) (22221) %e A360682 (111111) (32111) (33111) %e A360682 (41111) (51111) %e A360682 (221111) (222111) %e A360682 (311111) (321111) %e A360682 (2111111) (411111) %e A360682 (11111111) (2211111) %e A360682 (3111111) %e A360682 (21111111) %e A360682 (111111111) %t A360682 Table[Length[Select[IntegerPartitions[n],Median[Differences[#,2]]==0&]],{n,0,30}] %Y A360682 For first differences we have A237363. %Y A360682 For sum instead of median we have A360683. %Y A360682 For mean instead of median we have A360683 - A008619. %Y A360682 A000041 counts integer partitions, strict A000009. %Y A360682 A008284 counts partitions by number of parts. %Y A360682 A325347 counts partitions with integer median, strict A359907. %Y A360682 A359893 and A359901 count partitions by median, odd-length A359902. %Y A360682 A360005 gives median of prime indices (times two). %Y A360682 Cf. A000975, A027193, A067538, A114638, A307683, A359908, A360245, A360254, A360687, A360688. %K A360682 nonn %O A360682 0,7 %A A360682 _Gus Wiseman_, Feb 19 2023