This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A360686 #9 Feb 22 2023 08:08:12 %S A360686 1,2,2,4,3,8,7,16,17,31,35,60,67,99,121,170,200,270,328,436,522,674, %T A360686 828,1061,1292,1626,1983,2507,3035,3772,4582,5661,6801,8358,10059, %U A360686 12231,14627,17702,21069,25423,30147,36100,42725,50936,60081,71388,84007,99408 %N A360686 Number of integer partitions of n whose distinct parts have integer median. %C A360686 The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length). %e A360686 The a(1) = 1 through a(8) = 16 partitions: %e A360686 (1) (2) (3) (4) (5) (6) (7) (8) %e A360686 (11) (111) (22) (311) (33) (331) (44) %e A360686 (31) (11111) (42) (421) (53) %e A360686 (1111) (51) (511) (62) %e A360686 (222) (3211) (71) %e A360686 (321) (31111) (422) %e A360686 (3111) (1111111) (431) %e A360686 (111111) (521) %e A360686 (2222) %e A360686 (3221) %e A360686 (3311) %e A360686 (4211) %e A360686 (5111) %e A360686 (32111) %e A360686 (311111) %e A360686 (11111111) %e A360686 For example, the partition y = (7,4,2,1,1) has distinct parts {1,2,4,7} with median 3, so y is counted under a(15). %t A360686 Table[Length[Select[IntegerPartitions[n], IntegerQ[Median[Union[#]]]&]],{n,30}] %Y A360686 For all parts: A325347, strict A359907, ranks A359908, complement A307683. %Y A360686 For mean instead of median: A360241, ranks A326621. %Y A360686 These partitions have ranks A360550, complement A360551. %Y A360686 For multiplicities instead of distinct parts: A360687. %Y A360686 The complement is counted by A360689. %Y A360686 A000041 counts integer partitions, strict A000009. %Y A360686 A000975 counts subsets with integer median. %Y A360686 A027193 counts odd-length partitions, strict A067659, ranks A026424. %Y A360686 A067538 counts partitions with integer mean, strict A102627, ranks A316413. %Y A360686 A116608 counts partitions by number of distinct parts. %Y A360686 A359893 and A359901 count partitions by median, odd-length A359902. %Y A360686 Cf. A240219, A359906, A360005, A360071, A360244, A360245, A360556, A360688. %K A360686 nonn %O A360686 1,2 %A A360686 _Gus Wiseman_, Feb 20 2023