This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A360687 #10 Feb 27 2023 07:46:04 %S A360687 1,2,3,4,5,9,10,16,22,34,42,65,80,115,145,195,240,324,396,519,635,814, %T A360687 994,1270,1549,1952,2378,2997,3623,4521,5466,6764,8139,10008,12023, %U A360687 14673,17534,21273,25336,30593,36302,43575,51555,61570,72653,86382,101676 %N A360687 Number of integer partitions of n whose multiplicities have integer median. %C A360687 The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length). %e A360687 The a(1) = 1 through a(8) = 16 partitions: %e A360687 (1) (2) (3) (4) (5) (6) (7) (8) %e A360687 (11) (21) (22) (32) (33) (43) (44) %e A360687 (111) (31) (41) (42) (52) (53) %e A360687 (1111) (2111) (51) (61) (62) %e A360687 (11111) (222) (421) (71) %e A360687 (321) (2221) (431) %e A360687 (2211) (3211) (521) %e A360687 (3111) (4111) (2222) %e A360687 (111111) (211111) (3221) %e A360687 (1111111) (3311) %e A360687 (4211) %e A360687 (5111) %e A360687 (32111) %e A360687 (221111) %e A360687 (311111) %e A360687 (11111111) %e A360687 For example, the partition y = (3,2,2,1) has multiplicities (1,2,1), and the multiset {1,1,2} has median 1, so y is counted under a(8). %t A360687 Table[Length[Select[IntegerPartitions[n],IntegerQ[Median[Length/@Split[#]]]&]],{n,30}] %Y A360687 The case of an odd number of multiplicities is A090794. %Y A360687 For mean instead of median we have A360069, ranks A067340. %Y A360687 These partitions have ranks A360553. %Y A360687 The complement is counted by A360690, ranks A360554. %Y A360687 A058398 counts partitions by mean, see also A008284, A327482. %Y A360687 A124010 gives prime signature, sorted A118914, mean A088529/A088530. %Y A360687 A325347 = partitions w/ integer median, strict A359907, complement A307683. %Y A360687 A359893 and A359901 count partitions by median, odd-length A359902. %Y A360687 Cf. A000975, A329976, A359908, A360068, A360460, A360550, A360556, A360688. %K A360687 nonn %O A360687 1,2 %A A360687 _Gus Wiseman_, Feb 20 2023