This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A360688 #6 Feb 22 2023 08:07:58 %S A360688 1,1,3,4,5,7,12,18,25,32,46,62,79,109,142,189,240,322,405,522,671,853, %T A360688 1053,1345,1653,2081,2551,3174,3878,4826,5851,7219,8747,10712,12936, %U A360688 15719,18876,22872,27365,32926,39253,47070,55857,66676,79029,93864,110832 %N A360688 Number of integer partitions of n with integer median of 0-appended first differences. %C A360688 Includes all partitions of odd length (A027193). %C A360688 The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length). %e A360688 The a(1) = 1 through a(8) = 18 partitions: %e A360688 (1) (2) (3) (4) (5) (6) (7) (8) %e A360688 (21) (22) (41) (42) (43) (44) %e A360688 (111) (211) (221) (222) (61) (62) %e A360688 (1111) (311) (321) (322) (332) %e A360688 (11111) (411) (331) (422) %e A360688 (21111) (421) (431) %e A360688 (111111) (511) (521) %e A360688 (3211) (611) %e A360688 (22111) (2222) %e A360688 (31111) (3221) %e A360688 (211111) (4211) %e A360688 (1111111) (22211) %e A360688 (32111) %e A360688 (41111) %e A360688 (221111) %e A360688 (311111) %e A360688 (2111111) %e A360688 (11111111) %e A360688 For example, the partition y = (3,2,2,1) has 0-appended parts (3,2,2,1,0), with differences (1,0,1,1), and the multiset {0,1,1,1} has median 1, so y is counted under a(8). %t A360688 Table[Length[Select[IntegerPartitions[n],IntegerQ[Median[Differences[Prepend[Reverse[#],0]]]]&]],{n,30}] %Y A360688 The case of median 0 is A360254, ranks A360558. %Y A360688 These partitions have ranks A360556, complement A360557. %Y A360688 A000041 counts integer partitions, strict A000009. %Y A360688 A008284 counts partitions by number of parts. %Y A360688 A325347 counts partitions w/ integer median, strict A359907, ranks A359908. %Y A360688 A359893 and A359901 count partitions by median, odd-length A359902. %Y A360688 Cf. A000975, A027193, A237363, A240219, A360455, A360555. %K A360688 nonn %O A360688 1,3 %A A360688 _Gus Wiseman_, Feb 20 2023